See photos from Nordita


Current Event

Solar Helicities in Theory and Observations: Implications for Space Weather and Dynamo Theory


4—29 March 2019

Coordinators: Maarit Käpylä, Alexei Pevtsov, Ilpo Virtanen, Nobumitsu Yokoi

Magnetic helicity is a conserved quantity in ideal MHD and is also a topological invariant. Due to these properties, it plays special roles for the operation of the global solar dynamo, and in the release of solar eruptive events, but both of these related processes remain poorly understood. On both themes, theoretical models would benefit from being validated and constrained with observational data, and the increasing amounts of observational data could be more efficiently used as basis to improve the models. The abundant observational data pouring in from various sources poses its own challenges and sometimes cross-calibrations are lacking. This program will bring together solar observers and dynamo theorists to work on these topics. We aim to obtain crucial new knowledge on the operation of the global solar dynamo itself, but also how it drives eruptive events which then are observed as space weather.

Show:  All events  Programs  Workshops, Conferences, Meetings  Schools
Info: Full Medium Brief
Period: All Current & Future

Future Events


New Directions in Quantum Information


1—26 April 2019

Coordinators: Janet Anders, Erik Aurell, Mohamed Bourennane, Pawel Horodecki, Mikael Skoglund

Quantum Information Science is a major frontier of modern science and technology, exploring physical situations that are classically impossible. An important technological application, already available today, is secure quantum key distribution realized by spatially separated entangled quantum states. This program will be centered around new fundamental physical questions that will emerge from successful current and future quantum technologies. The focus will be on effects and phenomena that appear already in low-dimensional quantum systems, and which are (or may soon be) experimentally realized.

Effective Theories of Quantum Phases of Matter


6—31 May 2019

Coordinators: Tomáš Brauner, Carlos Hoyos, Sergej Moroz, Dam Thanh Son

Physical systems look different when observed at different resolutions: what appears as a continuum liquid to the naked eye becomes a cluster of jiggling atoms when observed at the resolution of an electron microscope. Effective field theory provides a description of physics in terms of degrees of freedom appropriate to a given resolution. Over the last couple of decades, physicists have developed effective field theory tools which, to a large extent, unify fields as diverse as atomic and condensed-matter physics, particle and nuclear physics, and cosmology. The ensuing interaction between different branches of physics has never been as fruitful as it is now. The aim of this program is to give a new impulse to a further development of this exciting interdisciplinary field. We bring together leading practitioners working on effective theories of quantum phases of matter across several branches of physics. Our goal is to map out important open problems with broad relevance and look for new directions towards their solution, to reinvigorate existing collaborations and foster new connections.

Statistical Physics of Complex Systems


7—11 May 2019

Coordinators: Christian Beck, Guido Caldarelli, Letitia Cugliandolo, Ewa Gudowska-Nowak, Holger Kantz, Paul Manneville, Stefano Ruffo, Raúl Toral

Statistical mechanics provides a universal formalism to understand the behavior of a variety of complex systems on a variety of spatio-temporal scales. This conference will deal with a selection of the most recent developments and cutting edge scientific research topics within the general area of nonequilibrium statistical physics, stochastic modelling, complex networks, nonlinear dynamical systems, chaos and turbulence, disordered quantum systems and spin glasses, phase transitions and critical phenomena, and interdisciplinary applications in physics, biology, economics, and the social sciences. There will be ample opportunity for informal discussions and interdisciplinary interaction between people from different scientific backgrounds within the broad area of statistical and nonlinear physics. This will be the 2nd conference of the EPS Statistical and Nonlinear Physics Division, connected with the award of the EPS Statistical and Nonlinear Physics Prize.

Zoom-In and Out: From the Interstellar Medium to the Large Scale Structure of the Universe


3—28 June 2019

Coordinators: Angela ADAMO, Andrea FERRARA, Matthew HAYES, Michael RUTKOWSKI, Livia Vallini

This Nordita Program is devoted to theoretical and observational studies of the interstellar medium of galaxies across cosmic time, and to their implications in shaping future line-intensity mapping experiments which have recently generated a tremendous interest in the Community of astrophysicists and cosmologists. The program is particularly timely because the advent of new facilities, such as ALMA full array, JWST (launch spring 2019), and E-ELT (2024), will provide a wealth of high resolution multi-wavelength spectroscopic data on the ISM of galaxies across cosmic time. Moreover, the program will bring together experts from different areas as we aim gathering astrophysicists, working on galactic and extragalactic observation, theoreticians devising simulations, astrochemists, and cosmologists interested in the large scale structure of the Universe. The program has been conceived with a bottom-up structure that, from ~pc scales, relevant for star formation, will zoom-out up to ~Mpc scales relevant for intensity mapping experiments.

Quantum Connections in Sweden 6: Physics Summer School on Quantum Frontiers


10—22 June 2019

Venue: Högberga gård, Stockholm


This school, intended for PhD students and junior researchers in quantum phenomena and condensed matter physics, will consist of short courses on topics from Short courses from Quantum Matter, Quantum Information and Quantum Sensing, from theory to computations and experimental results.

Elliptic integrable systems, special functions and quantum field theory


16—20 June 2019

Coordinators: Martin Hallnäs, Edwin Langmann, Hjalmar Rosengren

In recent years there have been exciting new developments at the interface between elliptic integrable systems, special functions and quantum field theory. The aim of this workshop is to obtain a better understanding of the emerging links between these topics and to help bring out further unexpected connections in the future. This will be achieved by bringing together researchers from diverse areas in mathematics and physics, for a week of lectures and informal discussions. The workshop is the continuation of a series (Kyoto 2004, Bonn 2008, Leiden 2013, Vienna 2017). It is a satellite meeting of String Math 2019, which takes place on Uppsala 1-5 July. The main themes of the meeting are: Elliptic integrable systems, Elliptic hypergeometric functions, Elliptic and classical Painlevé equations, and New special functions emerging from quantum field theory

Quantum Connections in Sweden 7: Quantum Topology and Time


24 June 2019


A week of workshops at the frontiers of quantum physics. Hosted by Frank Wilczek in collaboration with Stockholm University, Nordita and Wilczek Quantum Center at Shanghai Jiao Tong University.

From Molecular Basis to Predictability and Control of Evolution


1—26 July 2019

Coordinators: Marta Luksza, Armita Nourmouhammad, Fernanda Pinheiro

Growing amount of molecular biological data combined with current advances in modeling of complex systems provide unprecedented opportunities to understand biological evolution in a quantitative way. A quantitative description of an evolving system is the first step towards prediction and control, and it opens new exciting directions for highly interdisciplinary research. The central questions are: (i) to what degree we can predict the outcome of biological evolution, (ii) what features of the system are predictable and (iii) which features confer predictive value for a quantitative description of the system. This program brings together theoretical and experimental physicists, experimental biologists with an interest in quantitative modelling and mathematicians with interest in biological systems. We aim to create a dialog between researchers of different fields and to inspire future collaborations. In addition, further developments in this field would have significant translational impacts, e.g., by optimizing vaccines against evolving viruses, designing strategies for personalized cancer therapy and by providing insights to the problem of antibiotic resistance.

Integrability in Gauge and String Theories 2019


15—19 July 2019

Coordinators: Valentina Giangreco Marotta Puletti, Monica Guica, Henrik Johansson, Joseph Minahan, Olof Ohlsson Sax, Dmytro Volin, Konstantin Zarembo

The conference will cover cutting-edge non-perturbative methods in quantum field theory, as well as mathematical aspects of integrability and its more traditional applications in condensed-matter physics and statistical mechanics. Solvable models play a valuable a role in theoretical physics, as they illustrate general concepts in a simpler setting and provide insights into the qualitative features of more complex phenomena.

Holographic QCD


22—26 July 2019

Coordinators: Elias Kiritsis, Jacob Sonnenschein, Ismail Zahed, Konstantin Zarembo

In the last few years there has been renewed interest in QCD and hadronic dynamics using holographic gauge/gravity duality, resurge of the large N methods, progress in string models, integrability, unitarity and bootstrap and more. Also, many new experimental results were reported by ALICE at LHC regarding collectivization in pp and pA collisions, by LHCb at CERN and the B- and C-factories regarding the existence of exotics and the spectroscopy of heavy-light systems, and more recently the reporting of 2 neutron star mergers by the LIGO collaboration and its constraint on the nuclear dense equation of state. The conference will bring together practitioners of these interdisciplinary fields to discuss these exciting new developments, and explore the relevance of the holographic framework for addressing these observations.

Topological Quantum Matter: From Low-Temperature Physics to Non-Equilibrium Dynamics


29 July — 23 August 2019

Coordinators: Jens H. Bardason, Emil J. Bargholtz, Annica Black-Schaffer, Jan Budich, Roni Ilan

Recent advances in the band theory of crystalline materials have singled out topology as a key ingredient in the modern classification of matter, with major impact on measurable electronic properties. Topological band theory has also grown into an emerging paradigm in many areas of physics, and is now used to characterize metamaterials, including photonic, atomic, acoustic, and elastic systems, in both the quantum and classical regimes. As our understanding of topology in physics widens, the incorporation of out-of-equilibrium phenomena is gaining in importance.

Gravitational Waves from the Early Universe


26 August — 20 September 2019

Coordinators: Axel Brandenburg, Mark Hindmarsh, Tina Kahniashvili

Gravitational waves promise a new window into the highest-energy events in the evolution of the universe. The recent LIGO/Virgo detections of gravitational waves from the mergers of binary black holes and binary neutron stars and have ignited interest in the future direction of gravitational wave astronomy. A space-based laser interferometer, pioneered by NASA's LISA concept and the European Space Agency's eLISA program and ESA's recent spectacularly successful LISA Pathfinder mission, would enable direct detection of gravitational waves in the milliHertz range. A lower frequency range would allow detection of supermassive black hole mergers, tracing the galaxy merger history and serving as cosmic sirens to probe the universe's expansion history, as well as precursors for the LIGO sources. A space-based detector would also be sensitive to stochastic gravitational wave backgrounds produced by unknown physics operating in the very early universe, including an electroweak phase transition. This Nordita program will bring scientists together to engage in an effort to characterize and detect sources contributing to the gravitational wave background from the early universe, and the implications for new physics at the TeV scale and beyond.

Machine Learning for Quantum Matter


26—28 August 2019

Coordinators: Alexander Balatsky, Jens H. Bardarson, Mathias Geilhufe, Bart Olsthoorn

Machine learning has entered the field of quantum matter with applications covering quantum materials and the many-body problem. For example, interpretable and computationally-efficient machine learning models are able to capture the structure-property relationship in materials science. In case of the many-body problem, machine learning architectures provide versatile wavefunctions that lead to accurate results and prove to be more flexible than traditional methods. Conversely, methods in physics have also influenced the development of machine learning methods in the case of tensor networks. The workshop will feature talks by leading experts combined with the talks of younger participants to present a broad picture of the activities and best ideas on the use of ML methods in quantum matter.

Quantum Materials for Dark Matter Detection


9—13 September 2019

Coordinators: Alexander Balatsky, Jan Conrad, Alfredo Ferella, Mathias Geilhufe, Felix Kahlhoefer, Mathew Lawson

In the search for dark matter (DM), one particular focus is on light and ultra-light dark matter, i.e. sub-GeV mass dark matter from a hidden dark sector with a new force interacting with the standard model or ultra-light DM with mass range from 10−22 eV to keV. The arguably most popular example of the latter class is the axion, invoked to solve the apparent absence of CP violation in Quantum Chromo Dynamics. Detection of these particles poses new challenges to potential sensor materials: very small energy depositions, magnetic properties and anisotropic response to particle interactions for example become crucial requirements. The challenge of finding suitable materials fits well with recent developments in solid state physics: Motivated by the exponential growth of computational power and the resulting data, we witness the rapid adoption of functional materials prediction within the framework of materials informatics. Here, methods adapted from computer science based on data-mining and machine learning are applied to identify materials with requested target properties.

Challenges in Theoretical High-Energy Physics


23—27 September 2019

Coordinators: Agnese Bissi, Valentina Giangreco Puletti, Magdalena Larfors, Marta Orselli


nw-4.6 (870)
20 Mar 2019

This page was printed on 2019-03-25 from