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Abstract
A complex scalar field caught in the false minimum of a potential may tunnel through the
potential barrier and create a bubble expanding and converting all of space into the true
vacuum. This phenomenon introduced by S. Coleman and C. Callan is reviewed with great
care and then expanded upon. We consider a vacuum state containing a straight, global or
local cosmic string. The core is occupied by the true vacuum which is separated by a thin
cylindrical wall from the false vacuum in the exterior of the string core. This setup is modeled
by a complex scalar field under a global or local U(1) symmetry with non-zero winding
with a wine bottle potential of nearly degenerate minima. We compute the bounce action
for a global-string-induced tunneling, where the string is destabilized locally developing an
expanding lump that converts space into the true vacuum. This new bounce configuration
has an O(2) x O(2) symmetry. We solve the bounce and the solution is then used to model
the shape and trajectory of these elongated bubbles for a full range of parameter values.
We compare the string induced tunneling to that of the Coleman bubble and describe the
parameter range where the cosmic string bubbles dominate the transition rate.
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1 Introduction
The decay of the false vacuum is described by the "Bounce" solution, studied in [1, 2] by
S. Coleman and C. Callan. The solution considers a metastable Lorentz invariant vacuum,
has O(4) symmetry and results in an expanding spherical bubble converting all space to
the true vacuum as shown in Figure 1.1. The phase transition in this scenario provides an
exciting footing for exploration of many topics. The transition to a lower energy potential
would in theory inject some energy into the vacuum, this is a particularly interesting effect
and has applications for well motivated physics beyond the standard model. Vacuum decay
in a first-order phase transition is also relevant for many current cosmological problems.
For example it can be applied to Baryogenesis [3], the production of dark matter [4, 5] and
maybe even the Hubble tension [6]. The vacuum bubbles could also produce as stochastic
background of Gravitational Wave (GW) when they collide [7].

Our setup assumes the existence of cosmic strings (not to be confused with Cosmic Super-
strings originating from string theory [8, 9]). These are a non-trivial field solution which
introduce a complex phase with a winding number [10]. With such a phase there exists a point
in the field profile where the phase becomes degenerate leaving a one dimensional singularity,
the cosmic string. They are incredibly interesting in their various effects, possibly leaving
signals in the Cosmic Microwave Background (CMB) and possibly having some seeding
effect on matter overdensities [11–13]. Cosmic strings are a somewhat contentious area of
research as time and time again we have failed to isolate any of the predicted signals they
might have produced. Our mechanism offers a way for the strings to have existed and, ease
conflict with the current observations.

Our research considers the effects on vacuum decay when a string is present. This translates to
our setting of a U(1) complex scalar field in a potential containing a true and false minimum.
Further, assuming a nearly negligible energy difference simplifies the analysis. The shape and
requirements of our potential are described in detail in Section 1.1. Seeded vacuum decay is a
rich area of research where many different sources for vacuum bubbles forming have been
studied. In [14–21] authors considered black holes as seeds for vacuum decay. Monopoles as
an enhancement for phase transitions are studied in [22–25]. The domain wall as a source for
phase transitions is studied in [26–28].

We consider the vacuum decay rate when we no longer have a Lorentz invariant vacuum and
instead have some classically stable symmetry breaking object, a cosmic string with O(2)
symmetry. For simplicity we assume a sextic potential that maintains the classical stability of
the system and allows for metastable cosmic strings. We consider the case where the cosmic
string transitions to an unstable solution via sub-barrier tunneling and expands radially at
relativistic speeds, restoring the symmetry of the vacuum to that of the Lorentz invariant
vacuum; ultimately making itself disappear.

The main objective of this work is to compute the lifetime of a metastable vacuum as defined
by our potential. While this has been initially attempted in the literature [29, 30], we for the
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Figure 1.1. The left image shows the O(4) and O(3)×τ bounce solutions and the right shows
the O(2)×O(2) solution.

first time provide a result that fully covers the parameter space in the so-called Thin Wall
Limit (TWL), and takes into account relativistic corrections. This enables us to describe
in which parameter regime the false vacuum decays through this new process and where
it proceeds through conventional Coleman bubble nucleation. Moreover, we can study the
dynamics of the bubbles after the phase transition has begun.

Let us start by providing an outline of this thesis: In Section 2 we draw a connection between
single particle quantum tunneling and tunneling in field theory. We show that the tunneling
rate can be written as the exponential of the Euclidian action of the bounce. We then review
the tunneling amplitude in an O(4) symmetric case with a scalar field φ . We introduce the
TWL to get the final Euclidian action found in [1, 2]. We next give and alternative derivation
where we assume only O(3) symmetry and then apply a Lorentz boost to the static wall profile
to propagate through time. We recover the same result as in the O(4) case, an important
equivalence that we make use of in Section 4. Finally, we explicitly show that the TWL allows
us to ignore the friction term in the Equations of Motion (EOM) of the field in the wall region.

In Section 3 we consider the static and straight cosmic string with O(2) symmetry. The
section explores the differences between global and local symmetry arising from our cosmic
string. We evaluate the EOM for cosmic strings in our given symmetry and potential, then
explore the radial profile of a string that is estimated to have negligible wall width, making it
effectively a hollow cylinder, all expressed in terms of the winding number n. We discuss the
validity of the TWL for cosmic strings. Finally we have a very brief discussion of possible
observable signals that may be caused by cosmic strings.

Section 4 is the main part of this work. Here we consider the TWL in our new global
O(2)×O(2) symmetry and show that the EOM can again be simplified in the wall region.
We compute the generalized bounce solution depicted in the right panel of Figure 1.1, which
illustrates the physical decay of the false vacuum seeded by a cosmic string. This in turn
allows us to compute the Euclidian action, which controls the tunneling rate. We then show
that when the effective winding number approaches 0 we recover the result from the O(4)
case in Section 2. We compute the action numerically to show the wall profile and tunneling
probability of our expanding string under the full range of parameter values. We consider the
dynamics of the string wall and show that the velocity is never superluminal—an important
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consistency check. Finally we discuss the phenomenology and compare the lifetimes of
vacuums containing cosmic strings and those which only decay via Coleman tunneling. The
main results of this thesis are an explicit expression of the O(2)×O(2) bounce action whose
solution is described in Figure 4.6, the radial profile of an expanding local cosmic string found
in Figure 4.8, the velocity profile of the bubble wall found in Figure 4.12 and the regime
of validity for which the string solution dominates nucleation (233). The contents of this
can in part be found in our recent preprint [31] not including the wall velocity discussion.
The paper contains a detailed discussion of GW produced by the local string decay and a
cosmological model leading to a universe where this decay mechanism is viable. Neither
of these discussions are included in this thesis. Our analysis takes ℏ = c = 1 and our sign
convention is (-,+,+,+).

1.1 Setup
Throughout this thesis we explore false vacuum tunneling. We would therefore like to begin
by defining the corresponding potential that admits this false vacuum. Moreover instead of
a real scalar field we have a complex scalar field with global or local U(1) symmetry. We
require the presence two minima with one lower than the other, the lower is the true vacuum
while the higher is the false vacuum. For a complex scalar field this points to a sextic potential,
which we can write in its most general form as

V (|φ |) =V1 +µ
2|φ |2 −λ |φ |4 +λ6|φ |6. (1)

Our potential is required to exhibit 2 minima, the true minimum lying at |φ0|=0 and the false
minimum lying at |φ f |. An action must be dimensionless and the potential V thus has four
mass dimensions. We can then infer the following dimensions

[V1] = 4, [|φ |] = 1, [µ] = 1, [λ ] = 0, [λ6] =−2. (2)

We can find some limits on the coefficients λ , λ6 and µ by imposing our shape requirements.
First we look for the extrema of our potential by requiring

V ′(|φ |) = 2µ
2|φ |−4λ |φ |3 +6λ6|φ |5 = 0. (3)

The first trivial root lies at |φ0|=0 as we desired initially. The other two are

|φ |2 = 2λ ±
√
(2λ )2 −12λ6µ2

6λ6
→ |φ f |2 =

2λ +
√
(2λ )2 −12λ6µ2

6λ6
, (4)

Where the "-" branch corresponds to a local maximum and the "+" branch to a local minimum
which we identify with our described false vacuum at φ = φ f . We know that |φ | ∈ R and we
therefore require the argument of the root in (4) to be greater than or equal to 0. This provides
our first bound

0 < 4λ
2 −12λ6µ

2 ⇒ 1
3
>

λ6µ2

λ 2 . (5)

Next, we impose a lower bound by requiring

V (0)<V (|φ f |).
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This translates to
V1 <V1 +µ

2|φ f |2 −λ |φ f |4 +λ6|φ f |6. (6)

This is the condition that φ f is indeed a false minimum. We can input |φ f |2 from (4) to find

0 < µ
2 −λ

(
λ +

√
λ 2 −3λ6µ2

3λ6

)
+λ6

(
λ +

√
λ 2 −3λ6µ2

3λ6

)2

, (7)

which expands to

0 < µ
2 −λ

(
λ +

√
λ 2 −3λ6µ2

3λ6

)
+

1
9λ6

(
λ

2 +2λ

√
λ 2 −3λ6µ2 +λ

2 −3λ6µ
2
)
. (8)

We multiply the inequality by 9λ6 and then combine terms to find

0 < 6µ
2
λ6 −λ

2 −λ

√
λ 2 −3λ6µ2. (9)

We divide everything by λ 2 and rearrange, giving

√
1− 3λ6µ2

λ 2 <
6µ2λ6

λ 2 −1. (10)

We next square both sides and combine like terms after factoring out λ6µ2

λ 2 we obtain

1
4
<

µ2λ6

λ 2 . (11)

We now have explicit bounds on the shape of our potential. To be explicit, combining with
(5), we find

1
4
<

µ2λ6

λ 2 <
1
3
. (12)

Throughout our analysis we write our potential in a more digestible form

V (|φ |) = λ6
(
|φ |2 −ν

2
f
)2 (|φ |2 − εν

2
f
)
. (13)

Where we introduced our vacuum expectation value |φ f |= ν f . Referring to (1), we chose our
V1 term such that V (|φ f |) = 0, our value ε is assumed to be small. In fact, we will use it as a
dimensionless smallness parameter to realize what is called the thin-wall potential, which is
characterized by two almost degenerate minima. This will often allow us to drop terms of
order ε . To relate the potential in (1) to the simpler form above, we use the identities

ε =−2+
λ (4λ −3λ6ν2

f )

2λ6µ2 , [ε] = 0, (14)

and

ν
2
f =

2
3λ6

(
λ +

√
λ 2 −3λ6µ2

)
, [ν f ] = 1. (15)
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V Max

ΔV

Figure 1.2. The potential V (|φ |) defined in (13), where ∆V denotes the difference in potential
energy between the two minima and VMax the height of the potential barrier.

We can see a 2D projection of the shape of our potential in Figure 1.2. We will find the
quantities highlighted to be useful in future computations regarding our discussion of the
thin-wall limit. We have taken ν̄ f√

2
= ν f Our potential is now written

V (|φ |) = λ6

8
(2|φ |2 − ν̄

2
f )

2(2|φ |2 − εν̄
2
f ). (16)

We drop the "-" from notation for the rest of this thesis. Currently we would like to introduce
the energy density difference between the true and false vacuums

|V (0)|= ∆V =
ελ6ν6

f

8
. (17)

The expression for VMax can be found by evaluating our potential V (|φMax|) for the "-" branch
in (4). Using the definitions in (14) and (15) we find

|φMax|= ν f

√
1+2ε

3
. (18)

We can then explicitly compute the height of our potential barrier to be

VMax =V (|φMax|) =
λ6

8

(
ν2

f (1+2ε)

3
−ν

2
f

)2(
ν2

f (1+2ε)

3
− εν

2
f

)

=
λ6ν6

f

54
+O(ε). (19)
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We would lastly like to compare the height of the potential barrier VMax to the difference ∆V
to see

∆V
VMax

=
ελ6ν6

f

8
54

λ6ν6
f
∼ ε. (20)

We have built our potential with the distinct choice of ε to be small, thus our result tells us
that the energy difference between the true and false vacuum is negligible with respect to the
height of the potential barrier. This result is useful for our future computations.

The potential V (|φ |) is invariant under a general U(1) transformation:

φ → φeiα(x). (21)

This follows from the fact that V (|φ |) only depends on |φ | and |φ | →
√

φeiα(x)φe−iα(x) = |φ |,
thus V (φ) =V (φeiα(x)). We refer to this as local U(1) if α(x) has a spatial dependence. On
the other hand if α = const then we have global U(1) symmetry. In the global case we need
some gauge potential Aµ to make the kinetic term invariant.

1.2 Introducing the Cosmic String Induced Tunneling
Topic

Let us review the previous works published on the vacuum phase transition seeded from a
cosmic string bubble. The first mention of this problem was in [32] where the authors consider
both monopoles and cosmic strings. We will focus only on the cosmic string perspective.
Here the authors consider the effects of the spacetime distortion caused by such a topological
defect. The authors introduce a factor C which corresponds to the angle deficit δ = 8πGµs
due to the string tension µs and neglect the string winding, more specifically they assume an
O(4) symmetry despite the presence of a string. The bounce solution (a modified action), in
this case is found to be

Bs =
27π2σ4C2

s
2∆V 3 , (22)

where C2
s = 1− δ

2π
= 1−4Gµs. We see that the formula recovers the result in [1] in the limit

(δ << 1). The angle deficit is found to result in an enhanced tunneling rate but only very
slightly larger than the Coleman vacuum tunneling scenario. The reason for this limit is that
in general δ = 8πGµs < 1 for cosmic strings in standard GUT scale scenarios. The authors
introduce the lifetime of a vacuum containing a cosmic string to be

Ts =
1

LsV Γs
= L−1

s V−1m−2e−Bs (23)

where Ls refers to the average length of string contained per volume V, Γs is the tunneling rate
per string length and m is the typical mass scale of the tunneling sector. Their analysis has
several limitations: (i) They neglect that the bounce has O(2)×O(2) symmetry and instead
choose to evaluate under O(4) symmetry. (ii) They employ an expression for the deficit angle
δ , that is only valid outside of the string. (iii) They focus on the case with a very small effect
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by choosing δ << 1. Later we will see that (i) is only justified in the particular limit where
the string is infinitely thin.

The problem is also discussed in [30] in the local symmetry case. This work considers a
wine bottle potential, however, it is not specified to be in the thin-wall limit. In the same
work the cases of finite temperature and zero temperature potentials are explored, where zero
temperature is of greatest interest for our work. Moreover they focus on the unit winding case.
The work proves the existence of an O(2)×O(2) symmetric bounce solution but does not
explicitly compute it.

This idea was left nearly untouched until 2013 where the subject was explored further in [29].
Here the author considers the local string case. An important limitation of this paper is that
the bubble expansion is assumed to be non-relativistic in the computation of the Euclidian
action. The authors define the field ansatz to have general winding number n and they perform
a numerical shooting algorithm to find a final solution for the bubble profile. While our
work will follow their technical strategy we will go beyond the limit of non-relativistic wall
velocities. Moreover, we will provide an analysis of the whole parameter space in the thin-wall
limit. We will also specifically work out the parameter limit that allows us to recover the
results of [29].

A similar setup is discussed in [33] where the authors consider vortices in type-II supercon-
ductors which are similar to cosmic strings. There the winding number is chosen to be n > 1
in contrast to our n ≥ 0. The thick wall case is also discussed as well as the parameter ε

related to the potential energy difference between the two minima. There is a great discussion
of such limits on ε so that the string remains classically stable.

There are more modes of decay for cosmic strings, for example formation of a monopole
and anti-monopole pair as discussed in [34–36] where they relate the distance between the
pair of particles to the radius of a vacuum bubble. This relation between the two symmetries
provides another example in calculating the bounce action, however, it constitutes a different
physical scenario and relies on the viability of magnetic monopoles.
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2 Simple Quantum Tunneling

2.1 1D Quantum Tunneling
We would like to first consider the simplest possible example of quantum tunneling, that is
1D tunneling as discussed in [37]. We will consider the case of a single particle moving along
one dimension traveling through a potential barrier from one false minimum to a lower true
minimum. Our tunneling probability is written as

Γ = Ae−B/ℏ(1+O(ℏ)). (24)

q0 q f

V(q) -V(q)

qfq0

Figure 2.1. A basic potential for the simple 1D tunneling. The left plot shows the potential in
real time t and the right side shows the upside-down potential in Euclidian time τ . The point
q0 is the start and end point for the particle and the point q f is the turnaround point
assuming energy is conserved.

The standard result in QM tunneling discussion is

B =
∫ q f

q0

dq
√

2(V (q)−E), (25)

where q0 is the starting position of the particle and q f is the end point at which the particle
exits the classically forbidden region. We will connect these well known results to the field
theory case such that our future computations have a simple basis. We do this by expressing B
in the form of the Euclidian action. This equivalence is useful in the field theory computation
as it eliminates the need for defined endpoints. We first consider the lagrangian

L =
1
2

(
dq
dt

)2

−V (q), (26)

and EOM
d2q
dt2 +

V (q)
dq

= 0, (27)
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for our 1D particle. We have chosen q to represent a position along the potential and t real
time. At this point we make the key transformation of real time into Euclidian time, that is
τ = it which gives a new EOM of the form

d2q
dτ2 −

V (q)
dq

= 0. (28)

Obtained from the following Euclidian Lagrangian

LE =
1
2

(
dq
dτ

)2

+V (q). (29)

This is now the EOM with a flipped potential, shown in Figure 2.1. We proceed to define our
boundary conditions for our particle. The setup begins with a particle that is at some early
time placed very near to the top of a hill (q(τ)|τ→−∞ = q0), where after a very long time it
begins to roll down the hill and then up the next slope and after some time (q(0) = q f ), there

it stops
(

dq
dτ

∣∣
τ=0 = 0

)
and turns around then rolls back up its original hill such that after a

very long time it reaches its starting point again (q(τ)|τ→∞ = q0). This listed set of boundary
conditions constitutes the “Bounce" solution. Let us observe what happens in the formulation
of (25) with our new bounce conditions. Our total energy is written

E =
1
2

(
dq
dt

)2

+V (q) = L+2V (q). (30)

We can choose E = 0 for convenience and define that at position q0 we have V (q0) = 0 and
dq
dt

∣∣
q0
= 0. This choice, coupled with our definition of total energy (30) provides us with the

equality

−1
2

(
dq
dt

)2

=
1
2

(
dq
dτ

)2

=V (q). (31)

We can now re-write our bounce starting from (25)

B = 2
∫ q f

q0

dq
√

2V = 2
∫ q f

q0

dq
dq
dτ

=
∫

∞

−∞

dτ

(
dq
dτ

)2

=
∫

∞

−∞

dτ

[
1
2

(
dq
dτ

)2

+V (q)

]
=
∫

∞

−∞

dτLE = SE , (32)

we have applied our choice of E = 0 and taken our Euclidian definition from (31). Our factor
of 2 is absorbed when we adjust the limits to those of τ . Our relation shows that B, and thus
the tunneling probability, can be expressed with the Euclidian action evaluated for the bounce
solution. This result was then generalized by Coleman [1] to the field theoretic case, where
the tunneling probability is controlled by the Euclidian action. We discuss this derivation in
the next section.

2.2 The Coleman Bubble
We would now like to generalize our problem to that of a trapped complex scalar field. We
consider the case of three spatial dimensions, a time dimension and the false vacuum potential

10



described in Section 1.1. We will compute the bounce action for our field configuration.
Throughout the entirety of this thesis we are interested in the bounce solutions thus with any
mention of the ’Bubble’ the bounce is implied. We are interested in bubble configurations,
which look the same when approached from any spatial or time axis. Inside the sphere the
field lies in the true vacuum and outside of this sphere the field is in the false vacuum. We
begin by introducing our field and Lagrangian followed by defining our coordinate system and
then computing our EOM. We will introduce the TWL and finally conclude by computing
our action.

Our Lagrangian density for the system of interest is written with a complex scalar field φ and
a vector potential field Aµ . Our field φ is symmetric under U(1) transformation, that is to say
invariant under φ → φeiα transformations. Here we have µ = [τ, j] and j = [x,y,z],

L =−1
4

FµνFµν +(Dµ
φ)∗(Dµφ)−V (|φ |), (33)

where
Fµν = (∂µAν −∂νAµ) and Dµ = (∂ µ + ieAµ). (34)

Our tensor Fµν , the field strength tensor describes the electromagnetic field sourced from our
gauge field Aµ . We have our covariant derivative term Dµ which couples the scalar field φ to
our gauge field Aµ with a coupling constant e. Our global symmetry eliminates any gauge
field Aµ and we continue with Aµ = 0 to find

L = (∂ µ
φ)∗(∂µφ)−V (|φ |). (35)

We have the EOM

d
dxµ

∂L

∂ (∂µφ)
− ∂L

∂φ
= 0, (36)

d
dxµ

∂µφ − dV
dφ

= 0, (37)

∂
2
τ φ +∂

2
j φ =

dV
dφ

. (38)

We write a new set of conditions that reflect our higher dimensionality and new field φ . The
first denotes a symmetry of the trajectory centered at τ = 0 and the second imposes a limit
such that the action is finite,

∂φ

∂τ

∣∣∣
τ=0

= 0 and lim
τ→±∞

φ = φ f . (39)

Similarly, we designate a coordinate in position space for a turnaround point. We will expect
the field to have a symmetric spatial profile reflected over the center of symmetry. We choose
the position at which we find this symmetry to be x,y,z = 0. This position can be chosen
to be anywhere so long as it is a center of symmetry, we pick 0 as it simplifies our future
computations. We need to identify the bounce conditions of φ again to assure a finite action.
We write

11



∂φ

∂xi

∣∣∣
xi=0

= 0 and lim
xi→±∞

φ = φ f . (40)

Our action is then written as

S =
∫

d4x[(∂ µ
φ
∗)(∂µφ)−V (|φ |)]. (41)

We are particularly interested in the thin wall bubble. We have included a small difference of
ε in our potential as described in (16) to create a lower well centered at 0 with a difference in
potential of (17). With our potential, the action becomes

S =
∫

d3xdt[(∂ µ
φ
∗)(∂µφ)− λ6

8
(2|φ |2 − εν

2
f )(2|φ |2 −ν

2
f )

2]. (42)

We are interested in the Euclidian action as it simplifies our computations. To convert the
action we take our change of variable t = iτ to obtain SE . As discussed in the previous
subsection the change to Euclidian time results in a flipped potential. We have chosen the
notation ∂τφ = φ̇

S = iSE = i
∫

d3xdτ[φ̇∗
φ̇ +(∂ j

φ
∗)(∂ jφ)+

λ6

8
(2|φ |2 − εν

2
f )(2|φ |2 −ν

2
f )

2]. (43)

We make an ansatz for the complex scalar field φ such that we can separate the amplitude and
phase θ with winding number n.

φ(τ,x,y,z,θ) =
ν f√

2
f (τ,x,y,z)einθ →

n=0

ν f√
2

f (τ,x,y,z) (44)

In our spherical symmetry the winding contribution disappears. A connected path over the
surface of the sphere can be shrunken down continuously to a point, still on the surface. We
find

SE =
∫

d3xdτ

[
ν2

f

2
ḟ 2 +

ν2
f

2
(∂ j f )2 +

λ6ν6
f

8
( f 2 − ε)( f 2 −1)2

]
, (45)

with a potential in the new form

V ( f ) =−
λ6ν6

f

8
( f 2 − ε)( f 2 −1)2. (46)

With our boundary conditions in (39) and (40) it is logical to combine all the coordinates to a
new coordinate ρ4 =

√
τ2 + x2 + y2 + z2 such that our field exclusively depend on this new

variable ρ4 as f (ρ4). Our boundary conditions now specify the potential in the false vacuum
to be V (1) = 0 and the potential inside the core under the the TWL to be −∆V from (17)
(this is the case for real time t with the un-flipped potential as found in (16)). The boundary
conditions become

∂ f
∂ρ4

∣∣∣
ρ4=0

= 0 and lim
ρ4→∞

f = 1. (47)
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We compute the EOM in our simplified coordinate system. We can apply a 4D spherical
coordinate change to (45) and gain a factor of 2π2 to get

SE = 2π
2
∫

∞

0
dρ4 ρ

3
4

(
ν2

f

2
f ′2 +

λ6ν6
f

8
( f 2 − ε)( f 2 −1)2

)
︸ ︷︷ ︸

L

, (48)

where now f ′ = d f
dρ4

. Our EOM takes form

d
dρ4

∂L

∂ f ′
=

∂L

∂ f
(49)

f ′′− 1
ν2

f

dV
d f

=− 3
ρ4

f ′ (50)

On the right hand side we see a friction term, this has the potential to complicate solving the
action.

2.3 The Coleman Bubble in the Thin Wall Limit
In our initial EOM (38), by transforming our time to Euclidian time we have flipped the
potential (13). Now we are modeling the field as a particle placed very close to the top of
a hill allowed to very slowly start to roll. The particle will gain significant speed traveling
down the hill and then back up a very slightly shorter adjacent hill where it will come to
rest nearly at the top before rolling back down and then up again, finally coming to rest at
its initial starting point on the first hill. The friction term 3

ρ

d f
dρ

must be extremely small for
this to occur, due to the very slight difference in heights of the hills. We find the TWL from
the assumption that ε << 1 and thus the friction in the EOM is negligible in the wall region.
The bounce solution setup described requires the particle to take an extremely long time to
start rolling, this is analogous to the field profile as we pass through the wall, constant and
then very suddenly changing. This is to say the total time for the particle to go from one
peak to the other is much greater than the time the particle spends in the valley between them.
These conditions will be explicitly checked in the TWL section. For now we can continue to
evaluate our action with the EOM neglecting the friction term

ν2
f

2

(
d f (ρ
dρ

)2

=V ( f ), (51)

the solution to which is

f (ρ) =
eρ

1
2

√
λ6ν2

f√
2+ eρ

√
λ6ν2

f

, (52)

where ρ is some general argument.

13



f (ρ)

OuterWall

Inner Wall

-0.15 -0.10 -0.05 0.05 0.10 0.15
ρ

0.2

0.4

0.6

0.8

1.0

f(ρ)
Field Profile f

Figure 2.2. The profile field function f as we travel from the true vacuum (left) to the false
vacuum (right). The inner and outer wall sit at f = 1/4 and f = 3/4 respectively.

Continuing with the evaluation of the O(4) action we separate into 3 sections, interior, wall
and exterior. Sint

E is evaluated first. We have that f and f ′ are both 0, and the variable ρ0 is the
critical radius at which the bubble will continue expanding. We have

Sint
E =−π

2
∫

ρ0

0
dρ4ρ

3
4

λ6εν6
f

4
=−

πρ4
0 ελ6ν6

f

16
. (53)

For the wall portion we use our definition that f |ρ4=∞ = 1, giving

Swall
E = 2π

2
∫

ρ0+δ

ρ0−δ

dρ4ρ
3
4 (ν

2
f

f ′2

2
+V ( f )). (54)

We use (51) to combine the two terms and select our definition of the wall tension σ

Swall
E = 2π

2
ρ

3
0

∫
dρ4ν

2
f f ′2︸ ︷︷ ︸

σ

= 2π
2
ρ

3
0 σ . (55)

The exterior portion of the action is trivially 0 and we thus have

SE = Sint
E +Swall

E +Sext
E =−

π2ερ4
0 λ6ν6

f

16
+2π

2
ρ

3
0 σ +0 =−1

2
π

2
ρ

4
0 ∆V +2π

2
ρ

3
0 σ , (56)

where we have taken the definition from (17) and applied it to (53). We will now explicitly
compute the wall tension, starting with our definition of

σ =
∫

dρ4ν
2
f f ′2 = ν f

∫
dρ4

d f
dρ4

√
2V ( f ) = ν f

√
2
∫ 1

0
d f
√

V ( f ). (57)

The TWL allows us to explicitly evaluate the wall tension for our potential (46),

σ = ν f

∫ 1

0
d f
√

2V ( f ) = ν f

√
2λ6ν6

f

8

∫ 1

0
d f
√

( f 2 − ε)( f 2 −1)2, (58)
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finally taking ε to be 0 with√
λ6ν4

f

2

∫ 1

0
d f ( f − f 3) =

√
λ6ν4

f

2

[
1
2
− 1

4

]
=

√
λ6ν4

f

8
. (59)

After evaluating we can conclude with the explicit wall tension in the TWL.

σ =

√
λ6ν4

f

8
(60)

We can compute ρ0 by varying the action (56)

δS4
E

δρ0
=−2π

2
∆V ρ

3
0 +6π

2
ρ

2
0 σ = 0. (61)

Thus we have
ρ0 =

3σ

∆V
, (62)

using our definitions for σ and ρ0. We have the same Euclidian action as was computed in
[38]

S4
E =−1

2
π

2
(

3σ

∆V

)4

∆V +2π
2
(

3σ

∆V

)3

σ =
27
2

π2σ2

∆V 3 . (63)

2.4 The O(3) Symmetric Bubble
The Coleman Bubble we have discussed is O(4) symmetric. We will now explore the effects
when we do not assume such perfect symmetry and instead compute our action with time and
space separated. Our field still follows a U(1) symmetry and with that a spherical O(3) spatial
symmetry. With this, just as in the O(4) case, the gauge field is Aµ = 0. We make the same
ansatz for our field φ as in (44). From this point forward we will diverge from our previous
computations in the O(4) symmetric case.

We can take (45) and apply a spherical coordinate change to the spatial coordinates, we define
r3 =

√
x2 + y2 + z2. We have ḟ , f ′ representing differentiation with respect to the Euclidian

time τ and radial coordinate r3 respectively,

SO(3)
E = 4πν

2
f

∫
∞

−∞

dτ

∫
dr3r2

3

(
ḟ 2

2
+

f ′2

2
+

λ6ν4
f

8
( f 2 − ε)( f 2 −1)2

)
. (64)

We must account for relativistic wall speeds in our computations. We make an ansatz for the
field function argument by applying a Lorentz boost to the argument of f in the O(4) case.
The choice of arguments in f reflects the dependence of the field f on the proximity to the
bubble wall specifically as a static wall with a Lorentz boost applied

f (τ,r3) = f (γ(τ)(r3 −R(τ)︸ ︷︷ ︸
ζ (r3,τ)

)). (65)
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where
γ(τ) =

1√
1+ Ṙ(τ)2

, (66)

here R(τ) is the position of the wall. We have accounted for Lorentz contraction in the
wall thickness. The bubble wall is expected to approach relativistic speeds while it expands.
We maintain our spherical symmetry and propagate the wall through time resulting in the γ

inclusion to maintain Lorentz invariance. Our function f depends only on a single variable ζ

as in the O(4) case where it depended only on ρ4. Our new generalized EOM following our
ansatz (65) is

ν
2
f

(
d f
dζ

)2

= 2V ( f ). (67)

We can evaluate the O(3) action as in O(4) by evaluating each term in the 3 regions (Inside,
Wall, Exterior).

The kinetic term and gradient terms only exist within the wall. When working in this region,
we take advantage of our thin wall condition, we can replace any r3 terms in the spatial
derivative with R(τ) as they behave as constants within this integrand. The same reasoning
can be applied when setting any term containing (r3 −R(τ)) to 0. We find

SO(3)
kin = 4πν

2
f

∫
dτ

∫ R(τ)+δ

R(τ)−δ

dr3r2
3

ḟ 2

2
= 4πν

2
f

∫
dτR(τ)2

∫ R(τ)+δ

R(τ)−δ

dr3
1
2

(
∂ f
∂τ

)2

(68)

Applying the chain rule gives

SO(3)
kin = 4πν

2
f

∫
dτR(τ)2

∫ R(τ)+δ

R(τ)−δ

dr3
1
2

(
d f
dζ

)2(
∂ζ

∂τ

)2

= 4πν
2
f

∫
dτR(τ)2

∫ R(τ)+δ

R(τ)−δ

dr3
1
2

(
d f
dζ

)2

(γ̇(τ)(r3 −R(τ))− γ(τ)Ṙ(τ))2. (69)

In the last step we can take advantage of our parametrization and integrate over dζ with

γ(τ) =
∂ζ

∂ r3
,

the change in differential element maintains the same limits and we find

SO(3)
kin = 4πν

2
f

∫
dτR(τ)2

∫
γδ

−γδ

dζ
1

2γ(τ)

(
d f
dζ

)2

(γ(τ)Ṙ(τ))2. (70)

We can replace the last integral with the wall tension σ as we defined it in (57)

SO(3)
kin = 2π

∫
dτγR(τ)2Ṙ2(τ)σ . (71)

The gradient term follows similarly to the kinetic term,
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SO(3)
grad = 2πν

2
f

∫
dτ

∫ R(τ)+δ

R(τ)−δ

dr3r2
3

(
d f
dr3

)2

= 2πν
2
f

∫
dτR(τ)2

∫ R(τ)+δ

R(τ)−δ

dr3

(
∂ f
∂ζ

)2( dζ

dr3

)2

= 2πν
2
f

∫
dτR(τ)2

∫
γδ

−γδ

dζ

γ

(
d f
dζ

)2

γ
2. (72)

We take all our τ dependent terms to the left and find that the dζ integration is now exactly σ

SO(3)
grad = 2πν

2
f

∫
dτγR(τ)2

∫
γδ

−γδ

dζ

(
d f
dζ

)2

= 2π

∫
dτγR(τ)2

σ . (73)

The potential term is separated into the inside and wall regions as we defined f = 0 inside the
bubble and f = 1 outside giving the form

SO(3)
V = 4π

∫
dτ

−λ6εν6
f

8

∫ R(τ)−δ

0
dr3r2

3+

4π

∫
dτ

∫ R(τ)+δ

R(τ)−δ

dr3r2
3

λ6ν6
f

8
(( f 2 − ε)( f 2 −1)2). (74)

We can evaluate the radial integral for the inside region explicitly, for the wall region we use
the thinness and choose r3 to be treated as a constant R(τ),

SO(3)
V =−

πλ6εν6
f

6

∫
dτR(τ)3 +4π

∫
dτR(τ)2

∫ R(τ)+δ

R(τ)−δ

dr3V ( f )+O(δ ). (75)

We replace the potential in the second term using the EOM we found in (67)

SO(3)
V =−

πλ6εν6
f

6

∫
dτR(τ)3 +2π

∫
dτR(τ)2

∫
δγ

−δγ

dζ

γ
ν

2
f

(
d f
dζ

)2

. (76)

We find the wall region then contains the wall tension σ as defined in (57)

SO(3)
V =−

πλ6εν6
f

6

∫
dτR(τ)3 +2π

∫
dτ

R(τ)2

γ
σ . (77)

Our final action then follows from combining all the different regions kinetic and potential
terms

SO(3)
E =−

πλ6εν6
f

6

∫
dτR(τ)3 +2π

∫
dτ

R(τ)2

γ
σ(1+ γ

2 + Ṙ(τ)2
γ

2). (78)
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Simplifying the wall term we find (1+ γ2 + Ṙ(τ)2γ2) = 2 and our action becomes

SO(3)
E = 4π

∫
dτ

(
−εν6

f λ6

24
R(τ)3 +

R(τ)2

γ
σ

)
︸ ︷︷ ︸

LE

. (79)

We guess a solution of the form,

R(τ) =
√

R2
c − τ2, (80)

which follows from the O(3) symmetry. This guess solves our EOM

d
dτ

∂LE

∂ (∂τR)
− ∂LE

∂R
= 0, (81)

which when expanded with the contents of (79) as the langrage LE gives

2RṘ2
σγ +R2R̈σγ −R2Ṙ2R̈γ

3
σ − (−∆V R2 +2Rσγ

−1) = 0. (82)

From (80) we can compute γ = R
Rc

, Ṙ =− τ

R(τ) and R̈ =− 1
R(τ) −

τ2

R(τ)3 , giving

SO(3)
E = 4π

∫ Rc

−Rc

dτ

(
−∆V R(τ)3

3
+R(τ)Rcσ

)
. (83)

We continue to check that (80) solves (82) and we can proceed to find Rc by first computing
the action. We pick limits such that −Rc < R(τ)< Rc is real giving an action of the form

SO(3)
E = 4π

2
(
−1

8
R3

c

)
(∆V Rc −4σ). (84)

We require that Rc is a critical point in SE .

δSO(3)
E

dRc
= 0 =−1

2
π

2R2
c(∆V Rc −3σ) (85)

We find an explicit value for Rc

Rc =
3σ

∆V
, (86)

solving (82) with (80). We use our Rc combined with (84) and have an explicit value for the
bounce

SO(3)
E =

π2

2

(
27

σ4

∆V 3

)
, (87)

coinciding exactly with our result in (63). This is very important for our later computations.
We have confirmed that considering a static bubble wall and then applying a Lorentz boost
is in fact equivalent to evaluating the bounce action of an O(4) field. This equivalence
of approaches between O(3)× τ and O(4) is a key part of our later computations of an
O(2)×O(2) symmetric bubble, where we take the approach of applying a Lorentz boost to a
static wall.
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2.5 The Thin Wall Limit
We will now explicitly show the validity of our TWL approximations. We have choose our
potential and bubble configuration such that the field f is constant everywhere except the wall
(0 inside and 1 outside) as shown in Figure 2.2. We begin with the assumption that the energy
difference between the true and false minimums, ε , is extremely small. In this section we will
show that the energy lost due to friction is negligible in the wall region and the thickness of
the wall is negligible compared to the radius of the bubble. The entirety of the change in field
is inside of the wall, the thinner this wall is the more suddenly this change occurs. We find
that the TWL of the EOM is only used while evaluating the action, thus we must only show
the suppression of our friction term for the action within the wall region.

We have a potential of the shape (46) and an EOM (67) where f depends exclusively on a
variable υ such that d f

dυ
= f ′ is a total derivative. We find υ to be a composition of more

variables, this is not an issue so long as the field function f is parametrized entirely by υ ,
whatever υ may be. We have

ν
2
f f ′′− dV

d f
=−

3ν2
f

υ
f ′. (88)

We consider our trajectory of a single particle again. At some τ = −∞ we let go and the
particle very slowly begins to accumulate speed. When the particle passes the bottom of the
well it is moving quickly, as it approaches the top of the next hill it slows until it approaches
rest at τ = 0. This suppression can be written as the conditions

f ′′ >>
3
υ

f ′ and
dV
d f

>>
3ν2

f

υ
f ′. (89)

The stated conditions are more strict than is necessary for our computations, we loosen them
by requiring that the inequalities need only be satisfied under integration over the wall region.
Concretely, we can show that over the wall region the energy lost due to friction is very small
compared to the transfer between kinetic and potential energy as written

∫
dυ f ′(ν2

f f ′′− dV
d f

) =−
∫

dυ
3ν2

f

υ
( f ′)2. (90)

We have written the EOM (88) in an integration over υ and multiplied a term of f ′ into both
sides that will make the evaluation easier. We prove the validity of the TWL in our method by
(i) computing the order of magnitude of each term on the left hand side and (ii) we recover
(67) by assuming the friction term is ∼ 0. Let us begin by checking (ii), we can write (90)
under these assumptions as

∫
dυ f ′ν2

f f ′′ =
∫

dυ f ′
dV
d f

. (91)

We deconstruct the integrals such that both are trivial integrations

ν
2
f

∫
✟✟dυ

d
✟✟dυ

(
f ′2

2

)
=
∫

✟✟dυ
✚✚d f
✟✟dυ

dV

✚✚d f
. (92)
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We recover our EOM with an extra constant of c,∫
dV =V ( f )+ c = ν

2
f

f ′2

2
. (93)

This constant is 0 to preserve our conditions (47). With this result we can confirm that the
left hand side of our (88) is very small. We must confirm condition (i), f ′′ and dV

d f are of a

significantly greater order than
3ν2

f
υ

f ′. We must only verify that this is true for one of the two
terms as we have already shown condition (ii) that the two left hand terms are essentially
equal in the TWL. We can show this similarly to the previous condition, by multiplying in a
factor of f ′. Quickly we see that we can use the EOM to evaluate further,

ν
2
f

∫ R+δ

R−δ

dυ
3
υ

f ′ → ν
2
f

∫ R+δ

R−δ

dυ
3
υ
( f ′2) = 3ν f

∫ R+δ

R−δ

dυ
f ′
√

2V
υ

. (94)

In the last step we have taken into account that we are interested in the wall region and
applied our EOM (103). We can take another effect from this TWL and note that the limits of
integration are very close together, separated only by the thickness of the wall which we have
defined as extremely small. With this we can approximate any factors of υ as constants equal
to the radius of the wall, which we write as R. In the same step we decompose the f ′ factor

3ν f

∫ R+δ

R−δ

dυ
f ′
√

2V
υ

=
3ν f

R

∫ 1

0
✟✟dυ

d f
✟✟dυ

√
2V =

3ν f

R

∫ 1

0
d f

√
2V . (95)

Our last piece can be noted as our definition of the wall tension. We have finally an expression
for the friction contribution,

ν f

∫ R+δ

R−δ

dυ
3
υ
( f ′2) =

3σ

R
. (96)

We have computed our σ explicitly as (60) so we may write our friction (96) explicitly with
(60),

3
R

σ =
3
R

√
λ6ν4

f

8
. (97)

We must now show that for the left term from (93), within the wall V ( f ) >> 3σ

R . The left
hand side of this inequality is straightforward, with VMax from (19) marking the potential in
the wall region

3σ

R
1

VMax
=

1
R

81
4ν2

f
∼ O(1/R). (98)

We have that this friction term (96) is of O(σ/R). Our final step is to show that R is sufficiently
large such that the friction is vanishing within the wall in the action. We see υ as an analog of
R in (97) where υ may be smaller than R. We must confirm that

∆υ

υ
∼ ε. (99)

If υ < R and (99) then we confirm the friction term (97) is negligible. When computing ∆υ we
must define limits of f that mark the bounds of the wall. We may choose this conservatively
to be 1

4 < f < 3
4 , giving

20



∆υ =
∫

dυ = ν f

∫ 3
4

1
4

d f√
2V ( f )

=
1

ν2
f

√
λ6/4

∫ 3
4

1
4

d f
1

f ( f 2 −1)
. (100)

We transform following directly from (67) after which we have taken the limit ε → 0. We find

∆υ =
1√
λ6ν2

f

log
(

135
7

)
∼ O

(
1√
λ6ν2

f

)
, [∆υ ] =−1. (101)

The nature of our problem is such that we are only interested in cases where the bubble
is stable and the volume energy surpasses or is equal to the surface energy. We found the
minimum radius for which this is true to be υ0 from (62), we find

∆υ

υ
≤ ∆υ

υ0
= log

(
135
7

)
1√
λ6ν2

f

√
λ6ν2

f ε

3
∼ ε. (102)

With our result and υ0 ≤ R, we have confirmed R is sufficiently large such that (97) is of O(ε).
We finally have

ν
2
f

f ′2

2
=V ( f ), (103)

which we can safely use in our action computations.

21





3 Cosmic Strings
In this section we would like to introduce the Cosmic string. We will approach the problem as
a classical field configuration and derive the EOM for the global and local cases. We will then
discuss the effects such an object has in space, possible methods of detection and produced
signals.

Our Cosmic strings are defects produced by U(1) symmetry breaking. Our discussed potential
has a solution of the Coleman bubble, the same potential gives way to the static cosmic string.
We generally consider some temperature dependent potential, that at high temperatures has
a U(1) symmetry. As temperature decreases, the temperature dependence can create a new
minimum. The field will find itself in one of the two minima separated by a potential wall. We
consider this potential to be at 0 temperature and of the form (16). We can begin describing
our cosmic string with a general lagrangian density of the form

L =−1
4

FµνFµν −Dµφ
∗Dµ

φ −V (|φ |), (104)

where
Fµν = ∂µAν −∂νAµ and Dµφ = ∂µφ − ieAµφ . (105)

We have our vector field Aµ which couples to the scalar field with charge e. The potential we
are interested in is described in Section 1.1 where we have a true vacuum surrounded by a
false minimum separated by a potential wall of height VMax. The potential we have chosen
is shown in Figure 3.1. We will make an ansatz for the field φ that reflects this as a phase
contribution. Our phase contribution will have no impact on the amplitude of the field. Our
ansatz for such a field is

φr,θ =
ν f√

2
einθ f (r) and lim

r→∞
φ =

ν f√
2

einθ . (106)

Where we have chosen the coordinates to be polar in x and y such that

r =
√

x2 + y2, θ = arctan
(

x
y

)
, (107)

giving

gµν(t,x,y,z) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

→ gµν(τ,r,θ ,z) =


1 0 0 0
0 1 0 0
0 0 1

r2 0
0 0 0 1

 . (108)

We consider the phase θ in our potential. If we trace a circle of centered around the true
minimum, we have a phase beginning at θ = 0 increasing until it reaches θ = 2π where it
resets and continues. We consider how one might continuously shrink that circle down to a
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point at the true minimum. We find this is impossible to do while maintaining a defined phase
θ . At our true minimum point we have that the phase is all values in [0,2π] simultaneously,
and thus undefined. This line of undefined phase θ is the core of our string (lying on the z
axis in real space), a one dimensional defect. As a result our phase contribution we see that
these cosmic strings can only exist as either infinitely long or loops.

Let us now discuss the U(1) vector field Aµ . We make an ansatz for our gauge field Aµ as in
[29], describing how the field looks and changes throughout space, notably independent of
position in the z and τ directions. This is written as

Ai =−
nεi jx j

er2 a(r), i : (x,y), (109)

where we have the levi-cevita symbol ε , which is antisymmetric with ε12 = ε12 = 1

Figure 3.1. A three dimensional rendering of our wine bottle potential.

We would like to convert Ax,y,ρ into our polar coordinates for simplicity. The basis vectors of
the plane perpendicular to the string are

êx = (1,0) and êy = (0,1). (110)

We write our new basis vectors in terms of r and θ with r denoting the radial distance from
the string and θ the angle between the x and y components

êr = (cosθ ,sinθ), êθ = (−sinθ ,cosθ). (111)

We then write our Ar and Aθ with the above identities

Ar = Axcosθ +Aysinθ =−nxy
er2 a(r)+

nxy
er2 a(r) = 0, (112)

Aθ =−Axsinθ +Aycosθ =
nx2

er2 a(r)+
ny2

er2 a(r) =
n
e

a(r). (113)

Our lagrangian becomes significantly simpler immediately as only Aθ is non-zero and all
other gauge field terms vanish. Referring to our definition (105), we can write some of the
terms as now µ,ν sum over r,θ ,z,τ:
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Frr = Fθθ = Fzz = Fzr = Fzτ = Fτr = Fττ = 0. (114)

The only non-zero component being

Fθr =−Frθ = (✟✟✟✯0
∂θ Ar −∂ rAθ ) =−n

e
∂ra. (115)

We can follow the same procedure for the covariant derivative terms in (105) to find

Dθ = ∂θ − ie
n
e

a(r) = ∂θ − ina, (116)

such that
Dθ φ = ∂θ φ − ie

n
e

a(r)φ = inφ − ina(r)φ = inφ(1−a(r)). (117)

which gives an important result for outside the wall, where f = 1 and a = 1 we find Dµφ = 0.
We can write our action as

SE = 2π

∫
drdτdzr

[
− 1

4
[2gθθ grrFθrFθr]−

grr
∂rφ

∗
∂rφ −gθθ

∂θ φ
∗
∂θ φ

− iegθθ Aθ φ
∗
∂θ φ + iegθθ Aθ φ∂θ φ

∗−gθθ e2Aθ Aθ φ
∗
φ −V (|φ |)

]
. (118)

We input all of our elements from gµν in (108)

= 2π

∫
drdτdzr

[
− 1

4
[2
(

1
r2

)
F2

θr]

−∂rφ
∗
∂rφ −

(
1
r2

)
∂θ φ

∗
∂θ φ

− ie
(

1
r2

)
Aθ φ

∗
∂θ φ + ie

(
1
r2

)
Aθ φ∂θ φ

∗+

(
1
r2

)
e2Aθ Aθ φ

∗
φ −V (|φ |)

]
. (119)

We then fill in all of our field strength tensor components

= 2π

∫
drdτdzr

[
− 1

4
[2
(

1
r2

)(
− n

e
∂ra
)2
]

−∂rφ
∗
∂rφ −

(
1
r2

)
∂θ φ

∗
∂θ φ

− ie
(

1
r2

)(n
e

a
)
φ
∗
∂θ φ + ie

(
1
r2

)(n
e

a
)
φ∂θ φ

∗+

(
1
r2

)
e2(n

e
a
)2

φ
∗
φ −V (|φ |)

]
. (120)

We can continue by including the ansatz for the field φ

∂rφ =
ν f√

2
einθ

∂r f and ∂θ φ = in
ν f√

2
einθ f , (121)
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such that our lagrangian is

= 2π

∫
drdτdzr

[
− 1

4
[2
( 1

r2

)(
− n

e
∂ra
)2

]

−∂r

(
ν f√

2
e−inθ f

)
∂r

(
ν f√

2
einθ f

)
−
( 1

r2

)
∂θ

(
ν f√

2
e−inθ f

)
∂θ

(
ν f√

2
einθ f

)
− ie

( 1
r2

)(n
e

a
)(

ν f√
2

e−inθ f
)

∂θ

(
ν f√

2
einθ f

)
+ ie

( 1
r2

)(n
e

a
)(

ν f√
2

einθ f
)

∂θ

(
ν f√

2
e−inθ f

)
+
( 1

r2

)
e2
(n

e
a
)2( ν f√

2
e−inθ f

)(
ν f√

2
einθ f

)
−V (|φ |)

]
. (122)

All of the phase θ exponential factors cancel and our action simplifies to

= 2π

∫
drdτdzr

[
− 1

4
[
( 2n2

e2r2

)
(∂ra)2]

−
ν2

f

2
(∂r f )2 −

ν2
f n2 f 2

2r2 +
n2ν2

f f 2

2r2 a+
n2ν2

f f 2

2r2 a

+

(
n2ν2

f

2r2

)
f 2a2 −V (|φ |)

]
, (123)

we can combine all the terms with a factor of
(

n2ν2
f

2r2

)
f 2

= 2π

∫
drdτdzr

[
− 1

4
[

(
2n2

e2r2

)
(∂ra)2]

−
ν2

f

2
(∂r f )2 −

ν2
f n2 f 2

2r2 (1−a)2 −V (|φ |)
]
. (124)

Our lagrangian density in our chosen polar coordinates is then

L = r
[
−
(

n2

2e2r2

)
(∂ra)2 −

ν2
f

2
(∂r f )2 −

ν2
f n2 f 2

2r2 (1−a)2 −V (|φ |)
]
. (125)

We would like to now compute the EOM for the scalar field f and the gauge field a

d
dr

∂L

∂ (∂r f )
− ∂L

∂ f
= 0 and

d
dr

∂L

∂ (∂ra)
− ∂L

∂a
= 0. (126)

When evaluated these are:

∂
2
r a− 1

r
∂ra+2ν

2
f f 2e2(1−a) = 0 (127)
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∂
2
r f +

∂r f
r

− n2 f
r2 (1−a)2 − 1

ν2
f

dV
d f

= 0 (128)

Let us for a moment consider the region outside the string. For our gauge field a, in order
to satisfy the EOM, we must require that at some distance r the field becomes constant, at
that we need the constant to be 1. Let us now consider the second EOM. We have previously
chosen an ansatz for f such that outside the string f is constant. We must finally consider the
case inside of the string. Following our choice of the TWL, our field f is 0 and constant, this
solves our EOM for f . Our a is slightly more complex but we see that as in [29], a(r) = r2

R2

solves our equation. With this we have the bounds

0 ≤ r < R

{
f (r) = 0
a(r) = r2

R2

and R ≤ r

{
f (r) = 1
a(r) = 1

(129)

where R refers to the radius of the string.

3.1 Global VS Local String
In this section we will work out some differences between local and global cosmic strings. Let
us consider the general lagrangian (33), specifically the kinetic term. We are interested in how
this term behaves in the limit of r → ∞ as the rest of the terms are well behaved. In our later
computations we focus on the global symmetry case but before we make this specification,
we discuss the difference between the two classifications.

3.1.1 Local Symmetry

Beginning by discussing the local case (also called gauge symmetric case) where the scalar
field and gauge field are invariant under a local transformation. The choice of the gauge field
Aµ follows from the specification that the kinetic term vanishes outside of the string wall.
Using the definition of the covariant derivative Dµ in (34), we find that this is accomplished if

Aµ ∼ 1
ie

∂µ(lnφ) =
1
ie

1
φ

∂µφ . (130)

We previously computed Dµφ in (117). Looking outside the string wall, we have a(r) = 1
from (129), this results in the kinetic term vanishing outside of the string as desired. We need
not worry about this term diverging within the string as it is bounded by the radius. Next we
would like to investigate the local gauge transformation

φ → φ̃eiα(x) and Aµ → Ãµ +
1
e

∂µα(x), (131)

where here the argument "x" is an arbitrary point in space. We confirm that our terms in (33)
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are invariant under such a transformation, writing

Dµφ → ∂µ φ̃eiα(x)− ie
(

Ãµ +
1
e

∂µα(x)
)

φ̃eiα(x)

=
(
∂µ φ̃ − ieÃµ

)
eiα(x)+ i∂µα(x)φ̃eiα(x)− i∂µα(x)φ̃eiα(x)

= D̃µ φ̃eiα(x). (132)

We can easily then see the invariance of the kinetic term, i.e. D̃µ φ̃∗D̃µ φ̃ = Dµφ∗Dµφ . Our
potential term V (|φ |) transforms trivially as |φ̃ |= |φ |. Finally, we must consider FµνFµν and
show its invariance. From

∂µAν −∂νAµ → (∂µ Ãν −∂ν Ãµ)+
1
e

∂ν∂µα(x)− 1
e

∂µ∂να(x) = ∂µ Ãν −∂ν Ãµ , (133)

we conclude that
FµνFµν = F̃µν F̃µν . (134)

With our condition that at large r our field function a(r)→ 1 we see that the field strength
tensor in (105) and our covariant derivative both vanish outside the string. We defined the
potential such that outside of the string the vacuum energy density is vanishing. Our action
for such a configuration is then convergent as desired, and we can safely integrate over all
space. Let us now consider what this gauge field means physically. The local string has some
enclosed magnetic flux within the core of the string shown with Stokes theorem

ΦB =
∫

B ·dS =
∮

A ·dl =
∫

dθ
1
ie

1
φ

∂θ φ =
2πn

e
. (135)

We have taken definitions for Aµ from (130) to show that the magnetic flux is proportional to
the winding number n and charge e. So long as n > 0 we have some magnetic flux through
the core of the string. Crucially, this magnetic flux is quantized in units of 2π

e as n ∈ N.

3.1.2 Global Symmetry

We move to the global string case and consider our action and lagrangian density again. In
the local case our transformation (131) had a spatially dependent phase α(x). For the global
case this phase becomes a constant

α(x)→ const, (136)

and we can set the gauge field Aµ to be 0 consistently. Our potential term V (|φ |) transforms
just the same as in the local case. Finally, the kinetic term causes some issues in the evaluation
of the action. We find ourselves with a term of the form

∫
dρdrρr(∂µφ

∗
∂

µ
φ)⊃

∫
dρρ

(
n2 ln

(
RMax

R

))
, (137)

where we used that φ ∝ einθ . We have had to impose an upper bound on the radius RMax.
Without such a bound the term is divergent and thus so is the bounce action. Physically, RMax
can be interpreted as the average separation between strings in a network of cosmic strings.
Designating a maximal radius allows us to actually interpret results later when computing the
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action. This bound is only necessary when computing the action of the static string. When
we compute the properly normalized bounce action this RMax dependence disappears and we
need not assign it a specific value. This global symmetry case proves to be significantly more
simple to evaluate analytically (up until the ρ integration) and thus we will continue with the
global choice.

3.2 Spatial Geometry of a Cosmic String

3.2.1 String Tension

In literature concerning cosmic strings estimated to be extremely thin, the string is often
entirely defined by its tension µ , the energy per unit length. In contrast in this thesis strings
are described as cylindrical objects with a (thin) wall at the radial position R(z) = r. In other
words, our discussion assumes a non-vanishing string width, thus before we continue with
external geometry of a cosmic string we must draw a connection between our wall tension
σ and the string tension µ . We only consider µ for the local cosmic string as the energy is
divergent at large distances from the wall in the global case, this divergence is discussed in
the previous section. The energy of the local cosmic string in our TWL is computed in [31] as

µ =
E(R)

L
=−πR2

∆V +
2πn2

e2R2︸ ︷︷ ︸
interior

+2πRσ︸ ︷︷ ︸
wall

. (138)

3.2.2 The Deficit Angle

When we analyze the gravitational field around a straight cosmic string we discover some
very interesting effects, namely the deficit angle, computed in [32, 39–41]. Here we provide a
brief review of its derivation. The energy momentum tensor is T ν

µ = µ ×diag(1,0,0,1) (in
cartesian coordinates) along the length of the string, outside it is vanishing. To find the angle
deficit we take the weak field limit meaning we estimate the metric to be nearly Minkowski
and write

gµν = η
µν +hµν . (139)

where hµν << 1. One then solves the Einstein equations

(∆2 −∂
2
t )hµν = 16πG(Tµν −

1
2

ηµνT ), (140)

under the Lorentz gauge

∂µ(h
µ

ν − 1
2

δ
µ

ν h) = 0, (141)

often a convenient choice when considering GW. The solutions to (140) for a vacuum string
give us the gravitational field

h00 = h33 = 0

and
h11 = h22 = 8µG ln

( r
R

)
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where R is the string radius and r =
√

x2 + y2 is the distance from the center of symmetry. We
can immediately see an interesting effect, as we travel further from the string the gravitational
field strength grows. The attached string tension factor µ lets us continue by writing out the
metric in cylindrical coordinates

ds2 = dt2 −dz2 −
(

1−8πµG ln
( r

R

))
(dr2 + r2dφ

2), (142)

then performing a coordinate transformation r′ =
√

ln
( r

R

)
r we have a metric of the form

ds2 = dt2 −dz2 −dr′2 − (1−8πµG)r′2dφ
2. (143)

We can clearly see an angle deficit of 8πGµ . This results in a conical warping of space-time
with the point of the cone lying at the center of the string. At this moment we would like to
make several comments: (i) the deficit angle δ is suppressed by the Planck mass and thus a
tiny effect; explicitly δ = 8πµG = µ

M2
Pl
<< 1 for sub-Planckian string tensions, where we

used the definition of the reduced Planck mass MPl
2 = 1

8πµG .

(ii) The same formula for δ holds approximately for a local cosmic string with finite thickness
far away from the string core.

(iii) For calculating the bounce action, which is the purpose of this work, we can safely neglect
the gravitational back-reaction of the string if we are in the typical regime where µ << M2

Pl
and thus δ << 1. This is also in line with the standard Coleman calculation of the O(4)
bounce action, which also neglects gravitational back reaction (also here including gravity
required a generalized treatment [42]).

(iv) In the case when δ = O(1) a more complicated solution beyond the scope of this work
would be needed where the ansatz T ν

µ reflects the O(2)×O(2) symmetry of the bounce
configuration. We stress however that this would require Planck scale string tensions. Instead,
in realistic production scenarios typically µ << M2

Pl .

3.2.3 Observable Effects of Simple Cosmic Strings

We generally consider the limit of an infinitely thin string while discussing any observable
effects. The effects that such an object could produce are incredibly unique as the O(2)
symmetry of the string is a stark juxtaposition with the homogeneity and isotropy of the
setting.

Gravitational lensing refers to the deflection of photons by gravitational fields, a phenomenon
that can be seen around massive objects such as black holes. In such cases the image will have
a curved shape appearing as a halo around the horizon of the object between the observer and
the source [43]. In the case of the cosmic string the lensing would result in a double image
on either side of the string [11, 40], no other theorized object could produce such an effect,
making it all the more exciting.

Another possible effect would be found in observation of the CMB. If we consider the strings
at very early times, moving very fast-we find that the surrounding matter will experience
a boost into the wake of the string [12, 44]. In the wake particles from either direction
perpendicular to the velocity of the string and the length will collide and heat up, resulting in
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a polarization. In the CMB this would show up as polarized rectangles, just as in the case of
gravitational lensing, no other object could create such an effect.

In recent years astrophysicists have been observing Large Scale Structures that surpass
homogeneity scales [45]. These objects are the Giant Arc [46] and the Big Ring [47]. Cosmic
strings are interesting for such conversations as the straight strings are of an infinite length
and thus can extend beyond the homogeneity scale.

It is clear that Cosmic Strings could have diverse and interesting effects both through a
theoretical and astrophysical lens. While the observational effects are obviously exciting, we
will continue our discussion in a theoretical capacity.
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4 String Induced Tunneling

The Coleman bubble is at this point a well understood mechanism for vacuum decay, we
expand this method to the case of the O(2)×O(2) symmetric configuration. Our generalization
takes the cosmic string defect as a starting point, where we define an infinite line (in our case
along the z axis) marking the core of the string. Our configuration is such that the field in
the core of the string sits in the true vacuum, outside of the string core the field sits in the
metastable vacuum as described in Figure 1.2. The two minima of our potential are separated
by a potential barrier and the field in the wall region interpolates between these two minima,
illustrated in Figure 2.2. Our cosmic string differs from the usually discussed stable cosmic
string as in such cases the core of the string sits at a potential maximum where in all directions
there lies a true minimum. In our case the linear vacuum defect is a straight line even though
a cosmic string need not be straight, we have simply chosen to analyze a very small section of
the string such that it can be treated as straight.

Our analysis follows Coleman’s methods [1] and, as opposed to prior work in [29], will
include relativistic corrections. We focus on the global string case for simplicity. For this
choice there is no gauge field, which we reflect in our computation by setting Aµ = 0. We
have discussed the spherical O(3)× τ case where there is no notion of a winding number.
We can understand this by imagining a connected path along the surface of the sphere. We
can smoothly shrink this path to a point without any discontinuities or undefined values in
the field φ . In particular, we can take the field to be real everywhere. Now, our symmetry is
broken into O(2)×O(2) and our configuration requires winding to be included in our bounce
action. This is done by including a non-trivial complex phase nθ , where n is the winding
number. In contrast to the spherical case, a loop around the string cannot be collapsed into a
point smoothly as along the z axis the phase becomes undefined, occupying all values in the
interval [0,2π] at once. We focus on the leading order of the tunneling amplitude and will
provide an order of magnitude estimate for the prefactor. We consider a section of the string
tunneling to critical radius that we call Rc just as in the spherical case. Our global action is
then written as

S2×2
E =

∫
dx4[−∂µφ

∗
∂

µ
φ −V (|φ |)]. (144)

To reflect our string setup symmetries we adjust the symmetries of our computation. Our new
radial coordinates are

ρ
2 = τ

2 + z2 and r2 = x2 + y2, (145)

each of them corresponding to one O(2) factor. Our field φ is parametrized as

φ(r,ρ,θ) =
ν f√

2
f (r,ρ)einθ , (146)
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such that we have our winding number n, angular coordinate θ , distance from the axis of
symmetry r, with f being our real scalar field function. We can use our parametrization to
recover our potential (46). Our action is then written in terms of this new parametrization as

S2×2
E =

∫
dx4

[
ν2

f

2
[∂ µ( f e−inθ )∂µ( f einθ )]+

λ6v6
f

8
( f 2 − ε)( f 2 −1)2

]
. (147)

We have not yet converted our differential elements to dρ and dr yet, the index µ now covers
ρ , r and θ . We re-parametrize by performing two polar coordinate transforms

ρ =
√

τ2 + z2, θ1 = arctan
(

τ

z

)
and

r =
√

x2 + y2, θ = arctan
(

x
y

)
. (148)

The determinant of the jacobian informs our re-parametrization in the action with

det−1


∂ρ

∂x
∂ρ

∂y
∂ρ

∂ z
∂ρ

∂τ

∂θ1
∂x

∂θ1
∂y

∂θ1
∂ z

∂θ1
∂τ

∂ r
∂x

∂ r
∂y

∂ r
∂ z

∂ r
∂τ

∂θ

∂x
∂θ

∂y
∂θ

∂ z
∂θ

∂τ

= det−1


0 0 z

ρ

τ

ρ

0 0 − τ

ρ2
z

ρ2
x
r

y
r 0 0

y
r2 − x

r2 0 0

= ρr. (149)

The θ and θ1 integrations give a factor of 2π each and we have an action

S2×2
E = 4π

2
∫

drdρρr

[
ν2

f

2

[(
∂ f
∂ρ

)2

+

(
∂ f
∂ r

)2

+
n2 f 2

r2

]
+V ( f )

]
. (150)

While the action appears to be much more simple, there is an observation we can make to
simplify our computations. Our field function f can be assigned some limits. In the core of
the string where r = 0 we are close to the true minimum: f ≃ 0 and our potential is −∆V
from (17). Outside the wall, we are in a false vacuum and f = 1. We define d f

dζ
= f ′ and

at this point like to make an observation for f ′ in our scenario. We have f ′ = 0 inside and
outside of the string, while it can take on finite values within the wall region. This behavior is
a result of our use of the TWL. We will later consider how the O(2)×O(2) symmetry affects
this regime. In summary we impose two boundary conditions

f ′(r → 0,ρ) = 0 and f (r → ∞,ρ) = 1, (151)

which are enough to close the system. This set of limits paired with the symmetry of the field
profile and dynamical equations arising from (150) are referred to as the bounce solution,
which was studied for this symmetry in [30]. We would like to make one further ansatz for
our field function f reflecting how the function actually behaves in the TWL, just as we did
in the O(3) symmetric Bubble discussion in Section 2.4. We have repeatedly defined the
field function to be a constant inside and outside of the bubble. One can identify that f is
a function of proximity to the wall at radial position r = R(ρ). We combine this behaviour
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and the assumption that the wall will expand at relativistic speeds to define a new function ζ ,
defined as

ζ = γ(r−R), (152)

that reflects this behaviour of

f (ρ,r) = fwall(ζ ) = fwall(γ(ρ)(r−R(ρ)), (153)

where we have defined the Lorentz factor γ(ρ) to reflect the Lorentz contraction of the
thickness of the wall as it moves with relativistic speeds. For convenience we will henceforth
drop the "wall" subscript. We also stress that the ansatz in (153) differs from that in [30]
where the ansatz is in the non-relativistic limit where γ ≃ 1,

γ(ρ) =
1√

1+
(

∂R(ρ)
∂ρ

)2
. (154)

In (154) we have a "+" sign where typically there would be a "-" as an artifact of our Euclidian
time choice. With our new parametrization we can write our action yet again in a new form

S2×2
E = 4π

2
∫

dρdrrρ

[
ν2

f

2

(
∂ f
∂ζ

)2
[(

∂ζ

∂ρ

)2

+

(
∂ζ

∂ r

)2
]
+

ν2
f n2 f 2

2r2 +V ( f )

]
. (155)

It is useful to know the EOM found from this action

d
dζ

∂L

∂ (∂ζ f )
− ∂L

∂ f
= 0, (156)

where the lagrangian density is

L = rρ

[
ν2

f

2

(
∂ f
∂ζ

)2
[(

∂ζ

∂ρ

)2

+

(
∂ζ

∂ r

)2
]
+

ν2
f n2 f 2

2r2 +V ( f )

]
. (157)

We can write the multiplicative term as r = ζ

γ
+R and treat ρ as a constant in this evaluation

as ζ does not explicitly have any dependence on ρ . Evaluating different terms in (156), we
obtain

• ∂L
∂ (∂ζ f ) = ν2

f ρr∂ζ f [(∂ρζ )2 +(∂rζ )
2],

• ∂

∂ζ

∂L
∂ (∂ζ f ) = ν2

f ρr
[
∂ 2

ζ
f [(∂ρζ )2 +(∂rζ )

2]+∂ζ f ∂ζ [(∂ρζ )2 +(∂rζ )
2]
]

+ν2
f

ρ

γ
∂ζ f [(∂ρζ )2 +(∂rζ )

2],

• ∂L
∂ f = ρr(

ν2
f n2 f
r2 + dV

d f ),

we therefore find an EOM

n2 f
r

+
r

ν2
f

dV
d f

− r f ′′[(∂ρζ )2 +(∂rζ )
2]

− f ′(r∂ζ [(∂ρζ )2 +(∂rζ )
2]+ γ

−1[(∂ρζ )2 +(∂rζ )
2]) = 0. (158)

This looks somewhat overwhelming. In the following section we will consider it in the TWL
which will simplify the problem considerably.
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4.1 Thin Wall Limit for Cosmic Strings
By assuming the energy difference between the true and false vacuum "ε", is very small,
and the height of the potential barrier VMax in Figure 1.2 is very large, we can make some
simplifications. We will only be using the EOM in the wall region, while computing the
action. With this we can proceed to find an EOM specifically for the wall region as we did in
the spherical cases from the previous section.

Within the wall we have that R− r = 0 which follows from defining the bubble to be in the
TWL. We also define Ṙ = dR

dρ
and γ̇ = dγ

dρ
. Using ζ defined in (152), we derive

∂ρζ = γ̇(r−R)− Ṙγ =
γ̇

γ
ζ − Ṙγ →

TWL
−Ṙγ, ∂rζ = γ, (159)

∂
2
ρ ζ = γ̈(r−R)− R̈γ −2Ṙγ̇ →

TWL
−R̈γ −2Ṙγ̇, ∂

2
r ζ = 0. (160)

We find

(∂ρζ )2 +(∂rζ )
2 =

γ̇2

γ2 ζ
2 −2γ̇Ṙζ + Ṙ2

γ
2 + γ

2 =
γ̇2

γ2 ζ
2 −2γ̇Ṙζ +1, (161)

replacing some terms with ζ when possible. In the last step of we use our definition of γ in
(154). We can compute our γ̇

dγ

dρ
=−1

2
2ṘR̈

(1+ Ṙ2)3/2 =−γ
3ṘR̈. (162)

We find

∂ζ ((∂ρζ )2 +(∂rζ )
2) = ∂ζ

(
γ̇2

γ2 ζ
2 −2γ̇Ṙζ +1

)
= 2

γ̇2

γ2 ζ −2γ̇Ṙ →
TWL

2Ṙ2R̈γ
3, (163)

where we set the first term to 0 as ζ ∼ 0 when R ∼ r and replace the second term with (162).
Our new EOM appears,

n2 f
R2 +

1
ν2

f

dV
d f

− f ′′− f ′(2γ
3R̈Ṙ2 +R−1

γ
−1) = 0. (164)

At this point we find the more nuanced effects of the TWL are useful in simplifying our
equation. We would like to show that (164) simplifies such that only the second and third
terms remain. We have chosen our bubble radius to be R(ρ). The nature of our problem is
such that we are interested in the radius of the O(2)×O(2) configuration after nucleation
(before it starts expanding). We denote the radius at the thickest part of the bulge with Rc.
This can then be used as a bound for our bubble wall profile R(ρ)

Rs < R(ρ)< Rc, (165)

where Rs is the static string radius which we will later define explicitly. In our equation there
appear some Ṙ and R̈ terms. We now consider their order of magnitude by defining them.
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Since we have identified that the maximal radius of the profile is Rc, we know that any change
in the radius of the profile can be at most Rc. Similarly our argument ρ is the coordinate
dependent on τ and z. If the bounce had a spherical shape we would have R(ρ) =

√
R2

c −ρ2

which gives ∆R ∼ Rc and ∆ρ ∼ Rc. However as our bounce is elongates in the z and τ

directions we have Rc ≲ ∆ρ and ∆R ≲ Rc in general. As a result

dR(ρ)
dρ

∼ ∆R
∆ρ

≤ Rc

Rc
∼ 1. (166)

Our estimation is reasonable as we expect the bubble to expand relativistically. To find our R̈
we use the same logic as for Ṙ and find

d2R
dρ2 ∼ ∆Ṙ

∆ρ
≲

1
Rc

≲
1
R
. (167)

We can use our estimate for Ṙ to find γ

γ = (1+ Ṙ2)−1/2 ≲ (1+12)−1/2 ∼ 1. (168)

We must finally consider the f and f ′ terms. We have already set our values of f for inside and
outside of the bubble in (151) giving 0 ≤ f ≤ 1. With respect to the profile of f ′ and f ′′, we
are interested in their most extreme values, which lie in the wall region along the radial axis
(as in Figure 2.2). Our definition in (152) allows us to take ∆ζ ∼ ∆r where ∆r = |r−R|<< R
giving

d f
dζ

=
∆ f
∆ζ

=
∆ f
∆r

∼ 1
∆r

and
d2 f
dζ 2 =

∆ f
∆r2 ∼ 1

∆r2 . (169)

Investigating (164) we multiply it by a factor of ∆r2 to make each term dimensionless. We
then identify suppressed terms by their order in the wall thinness parameter ∆r

R . Writing our
equation as

∆r2n2 f
R2︸ ︷︷ ︸
a

+
∆r2

ν2
f

dV
d f︸ ︷︷ ︸

b

−∆r2 f ′′︸ ︷︷ ︸
c

−∆r2 f ′︸︷︷︸
d.1

(2 γ
3︸︷︷︸

d.2

R̈︸︷︷︸
d.3

Ṙ2︸︷︷︸
d.4

+R−1
γ
−1︸ ︷︷ ︸

d.5

)

︸ ︷︷ ︸
d

= 0, (170)

we can begin. It is straightforward to check that each term is dimensionless. We can see
trivially that term a is of order O

(
(∆r

R )2). Four our term b we can take an estimation from
(101) where we explicitly computed the wall thickness and found it to be proportional to the

potential difference to the two vacuums, that is to say ∆V ∼ ν2
f

∆r2 , this results with term b being
O(1). Term c follows simply from (169) giving again O(1). From (169), (168), (167), (166)
and (168) we have d.1−d.5 respectively. Combined term d has O(∆r

R ). Finally we have each
terms order of magnitude

∆r2n2 f
R2︸ ︷︷ ︸

O((∆r
R )2)

+
∆r2

ν2
f

dV
d f︸ ︷︷ ︸

O(1)

−∆r2 f ′′︸ ︷︷ ︸
O(1)

−∆r2 f ′(2γ
3R̈Ṙ2 +R−1

γ
−1)︸ ︷︷ ︸

O(∆r
R )

= 0. (171)
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We can now clearly see that terms b and c are of leading order and terms a and d are
suppressed.

This result provides a useful consistency check. Picking only leading order terms our EOM in
the TWL for O(2)×O(2) symmetric bubbles is then

dV
d f

= ν
2
f f ′′. (172)

Which is exactly the form of (103), and can be rewritten in the same way as

2V ( f ) = ν
2
f f ′(ζ )2. (173)

In particular, for our sextic potential, the solution of this equation is given by (52). Moreover
(173) will be useful in computing the bounce action below.

4.2 Computing the Bounce Action of the Global String
Case

In this section we aim to map the field-theoretic problem of finding an O(2)×O(2) symmetric
solution f (ρ,r) to a simpler quantum mechanics problem of finding the ’trajectory’ of a single
relativistic degree of freedom in some non-trivial potential. We begin our computation with
the action in (155) by substituting f (ζ ) in (153). We also perform substitutions for the ∂ζ

∂ρ

and ∂ζ

∂ r terms that we computed in (160) and (159) (where we take the expression before we
apply the condition of being within the wall region). We then obtain

S2×2
E = 4π

2
∫

dρρ

∫
drr

[
ν2

f

2

(
∂ f
∂ζ

)2 [
(γ̇(r−R)− γṘ)2 + γ

2]+ ν2
f n2 f 2

2r2 +V ( f )

]
. (174)

Since we are working in the TWL it makes sense to decompose the r integration into 3 regions:
(i) The interior with 0 < r < R(ρ)−δ ; (ii) the wall where R(ρ)−δ < r < R(ρ)+δ and (iii)
the exterior with R(ρ)+δ < r < RMax, where δ is the wall thickness. We then have

L 2×2 =
ν2

f

2

(
∂ f
∂ζ

)2 [
(γ̇(r−R)− γṘ)2 + γ

2]+ ν2
f n2 f 2

2r2 +V ( f ), (175)

and

S2×2
E = 4π

2
∫

dρρ

(∫ R(ρ)−δ

0
drr[L 2×2]+

∫ R(ρ)+δ

R(ρ)−δ

drr[L 2×2]

+
∫ RMax

R(ρ)+δ

drr[L 2×2]
)
. (176)

We first evaluate the terms within the large parentheses and later will evaluate the ρ integration.
We begin with the interior where the profile function f is constant and vanishing. Our only
non-zero term is our potential,
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∫ R(ρ)−δ

0
drr

[
ν2

f

2

(
∂ f
∂ζ

)2 [
(γ̇(r−R)− γṘ)2 + γ

2]+ ν2
f n2 f 2

2r2 +V ( f )

]

=
∫ R(ρ)−δ

0
drr
[

V (0)
2

]
=

[
−R2(ρ)

∆V
2

]
+O(δ ), (177)

where ∆V was defined in (17). In other words, the interior integration gives rise to a negative
volume term ∝ −∆V R2. As usual we drop terms of order δ . The wall region allows for the
assumption r = R in accordance with the TWL and we can use our results from (160) and
(159) (now with the wall region simplifications). We find for the wall contribution

∫ R(ρ)+δ

R(ρ)−δ

drr

(
ν2

f

2

(
∂ f
∂ζ

)2 [
(γ̇(r−R)− γṘ)2 + γ

2]+ ν2
f n2 f 2

2r2 +V ( f )

)

=
1
2

∫ R(ρ)+δ

R(ρ)−δ

dr

(
ν

2
f

(
d f
dζ

)2

R+
ν2

f n2 f 2

R
+2RV ( f )

)
. (178)

Where we used that for r =R the factor in the square brackets evaluates to 1 using the definition
of γ in (154). Next we apply the substitution of our parameter ζ for a new differential element.
We have from (160) that ∂ζ

∂ r = γ which we use to replace the differential element dr. We
obtain

=
ν2

f

2

∫ R(ρ)+δ

R(ρ)−δ

dr
(

n2 f 2

R

)
+

1
2

∫
δγ

−δγ

dζ

γ

(
ν

2
f

(
d f
dζ

)2

R+2RV ( f )

)
. (179)

We take our EOM from (172), valid within the wall, and combine the last two terms giving

=
ν2

f

2

∫ R(ρ)+δ

R(ρ)−δ

dr
(

n2 f 2

R

)
+

R
γ

∫
δγ

−δγ

dζ ν
2
f

(
d f
dζ

)2

. (180)

At this point we can see that the winding term, proportional to n2, is relatively suppressed

due to the
(

d f
dζ

)2
term that is large within the wall region. Since f is bounded between 0 and

1, the winding term is of order δ , where δ denotes the wall thickness, and can be neglected.
We previously defined the wall tension σ for the O(3)× τ symmetric case in (57). We can
use the same definition by replacing the parameter ρ with our parameter ζ and thus the last
integral becomes

R
γ

ν
2
f

∫
δγ

−δγ

dζ

(
d f
dζ

)2

= Rγ
−1

σ +O(δ ). (181)

Lastly, for the exterior portion, f = 1 and all d f
dζ

terms are 0 as well as V (1) = 0. We thus
have

ν2
f

2

∫ RMax

R(ρ)+δ

dr
(

n2 f 2

r2

)
= ν

2
f

∫ RMax

R(ρ)+δ

drr
[

n2

2r2

]
=

ν2
f

2
n2 ln

(
RMax

R

)
+O(δ ). (182)
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We can now proceed by substituting (181), (177) and (182) into (176), which yields

S2×2
E = 4π

2
∆V
∫

dρρ

[
ν2

f n2

2∆V
ln
(

RMax

R

)
+

σ

∆V
R
γ
− R2(ρ)

2

]
+O(δ ), (183)

where we pulled out a factor of ∆V . We would like to collect all parameter dependence into
one parameter x. To that end, we begin by introducing a scaling factor α with

ρ̃ =
ρ

α
and R̃ =

R
α
, (184)

to find

S2×2
E = 4π

2
∆V
∫

dρ̃ ρ̃α
2

[
ν2

f n2

2∆V
ln
(

R̃Max

R̃

)
+α

σ

∆V
R̃
γ
−α

2 R̃2(ρ)

2

]
. (185)

If we set α = σ

∆V we are indeed left with a single parameter

x =
2ν2

f n2

∆V α2 =
2n2ν2

f ∆V

σ2 . (186)

To be explicit we find

S2×2
E = 4π

2 σ4

∆V 3

∫
dρ̃ ρ̃

[
x
4

ln
(

R̃Max

R̃

)
+

R̃
γ
− R̃2(ρ)

2

]
. (187)

This action is one of the central results of this thesis. It has reduced the the problem of
calculating the O(2)×O(2) bounce to the problem of solving the dynamics of a single degree
of freedom R(ρ) as a function of ’time’ ρ . As a first check let us take the static limit Ṙ = 0.
In that case the EOM becomes

δL
δ R̃

=−x
4

1
R̃
+

1
γ︸︷︷︸

γ=1

−R̃ = 0. (188)

We find the static string solution to be

R̃s(x) =
1−

√
1− x

2
. (189)

In the O(4) case there is no seed containing the true vacuum like what we have here in the
O(2)×O(2) symmetry, so there is Rs = 0 which we will see by sending the winding number
n → 0 and thus x → 0 in (189). The final bounce action is then the difference

B2×2 = S2×2
E −S2×2

E

∣∣∣
Ṙ=0

. (190)

It evaluates to

B2×2 = 4π
2 σ4

∆V 3

∫
dρ̃ ρ̃

[
x
4

ln
(

R̃s(x)
R̃(ρ̃)

)
+

R̃(ρ̃)
γ

− R̃2(ρ̃)

2
− R̃s(x)+

R̃s(x)2

2

]
≡ 4π

2 σ4

∆V 3

∫
dρ̃g(ρ̃). (191)

Where the function g(ρ̃) is a lagrangian. Solving analytically proved to be difficult thus we
continue numerically after validating our results to the best of our ability.
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4.3 Taking the Coleman Limit
The parameter x contains the winding number n. If we set x to approach 0 we should return to
spherical symmetry (no winding) as the string becomes infinitely thin, R̃s(0) = 0. We expect
to recover our results from the Coleman bubble O(3)× τ case. In this limit we can compute
the action analytically as

B2×2(x → 0) = 4π
2 σ4

∆V 3

∫
dρ̃ ρ̃

[
R̃(ρ̃)

γ
− R̃2(ρ̃)

2

]
. (192)

We can begin by noting ˙̃R =− ρ̃

R̃(ρ̃) , γ = R̃(ρ̃)
R̃c

and using the ansatz R̃(ρ̃) =
√

R̃2
c − ρ̃2 corre-

sponding to spherical symmetry. We evaluate with limits such that R̃(ρ̃) ∈ R

B2×2(x → 0) = 4π
2 σ4

∆V 3

∫
dρ̃ ρ̃

[
R̃c −

R̃2
c − ρ̃2

2

]
= 2π

2 σ4

∆V 3

[
R̃cρ̃

2 − R̃2
c ρ̃2

2
+

ρ̃4

4

]R̃c

0
. (193)

We finally have

B2×2(x → 0) = 2π
2 σ4

∆V 3

[
R̃3

c −
R̃4

c
4

]
, (194)

and we compute R̃c by varying the bounce,

δB2×2(x → 0)
δ R̃c

= 0 → R̃c = 3, (195)

which after the inverse rescaling in (184) yields the correct result from (86). Substituting back
into (194), we finally obtain the bounce action, confirming that we return to the Coleman
bubble in the x → 0 limit

B2×2(x → 0) =
27
2

π
2 σ4

∆V 3 , (196)

which indeed agrees with (87).

4.4 Numerical Bounce Solution

Our intermediate bounce action in (191) uses the dimensionless variables R̃ and ρ̃ . We will
henceforth drop the ∼ notation. We find an EOM for R(ρ) by treating g(ρ) in (191) as the
new lagrange. Defined as

Lρ = ρ

(
x
4

log(
1

R(ρ)
)− R(ρ)2

2
+R(ρ)γ−1

)
, (197)

where we define our γ as

γ =
1√

1+(∂ρR(ρ))2
. (198)
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γ takes into account relativistic effects and thus the coordinate change of t → ρ , including a
spatial dimension generalizes from a point particle trajectory to the bubble wall trajectory.
We can find the EOM explicitly from the above definitions by varying with respect to R(ρ),

0 =−ργ +
ρx

4R(ρ)
+R(ρ)

(
ρ +[Ṙ(ρ)+ Ṙ3(ρ)+ρR̈(ρ)]γ3) . (199)

We have defined our ρ in (145) where now we would like to write it in terms of our real time
t as

ρ =
√

z2 − t2. (200)

Evidently, this definition of ρ is only real in the region where z2 > t2. We would like to
define a second ρ̂ and solve our EOM again, now extending to the region where z2 ≤ t2, to be
explicit we set

ρ̂ =
√

t2 − z2. (201)

Our new R(ρ̂) is different to R(ρ), we identify which one we refer to by the argument. The
process for finding R(ρ̂) is functionally the same, although we must compute a change of
parameters to reflect ρ = iρ̂ . The Ṙ terms in (197) and (199) for R(ρ̂) will be taken with
respect to the new ρ̂ . We use the conversion rule

d
dρ

=
d

dρ̂

dρ̂

dρ
= i

d
dρ̂

. (202)

The EOM for R(ρ̂) now can be written for our new regime in which z2 ≤ t2, where the change
is noted in the γ̂ factor

γ̂ =
1√

1− (∂ρ̂R(ρ̂))2
. (203)

We note that the change from ρ to ρ̂ corresponds to an analytic continuation of R(ρ) into the
complex plane. Effectively, we solve R(ρ) along the real (t2 < z2) and imaginary (z2 ≤ t2)
axis. Our lagrange for R(ρ̂) is

Lρ̂ = ρ̂

(
x
4

log(
1

R(ρ̂)
)− R(ρ̂)2

2
+R(ρ̂)γ̂−1

)
, (204)

which leads to the EOM

0 =−iργ̂ +
iρ̂x

4R(ρ̂)
+R(ρ̂)

(
iρ̂ +[iṘ(ρ̂)− iṘ3(ρ̂)− iρ̂R̈(ρ̂)]γ̂3) . (205)

Our EOM in (199) and (205) could not be solved analytically, instead we opt for a numerical
approach. Further, the two regions t2 < z2 and z2 ≤ t2, must connect at ρ ∼ 0. We would like
this connection to be smooth and thus we proceed with linearized equations for R(ρ) and
R(ρ̂) by making the ansatz

Rρ<<1[ρ] = Rc +R2ρ
2 and Rρ̂<<1[ρ̂] = Rc + R̂2ρ̂

2, (206)

which assumes R′(0) = 0. We can use (199) and (205) to solve for R2 and R̂2 respectively.
We find that

R2 =−R̂2 =
4Rc −4R2

c − x
16R2

c
. (207)

This marks the end of what is analytically possible.
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4.4.1 Shooting Algorithm

We proceed to solve for our functions R(ρ̂) and R(ρ) separately with Mathematica’s

ParametricNDSolve function. In addition we solve,

dB2×2(ρ)

dρ
= g(ρ), (208)

which provides us with the Euclidian action B when evaluated for ρ → ∞. We proceed by
defining our boundary conditions for the numerical solutions to our equations. All of our
boundary conditions lie in the ρ << 1 limit, making an analytic solution possible. The first is

B2×2(ρ = ρmin) = ρmin, (209)

which follows from substituting (206) in (191). For our numerics we choose some ρmin ∼
10−12 and require (209).

The numerical solution requires boundary conditions that connect the linear solution in (206)
as the numerical solutions at ρ << 1. These are defined as

R(ρmin) = Rρ<<1(ρmin) and Ṙ(ρmin) = Ṙρ<<1(ρmin), (210)

where in the R(ρ̂) regime the boundaries are the same. The remaining problem is that we
don’t know what the value for Rc is. We must find a critical radius for each value of x such
that when we solve (191) for R(ρ), the resulting function satisfies the asymptotic boundary
condition

R(ρ → ∞) = Rs(x), (211)

where Rs is the radius of the metastable cosmic string defined in (189). However, for the
numerical integration we must specify (210). We therefore use what is called a shooting
algorithm, which allows us to find the value of Rc satisfying (211). To that end we impose our
boundary conditions in (210) for some arbitrary choice of Rc and solve for the function R(ρ)
and B2×2 for a fixed choice of x. The algorithm with which we look for Rc is a series of two
nested for-loops running only over our parametrized solution for R(ρ), taking advantage
of the fact that Rc will have the same value in the real and imaginary regimes. Our definition
of the static radius function Rs in (189) determines the bounds for our x values. To be specific,
Rs(x) is only well defined for 0 ≤ x ≤ 1. Our first for-loop runs over each x value from
x = 0.01 to x = 0.99, where we are careful to avoid the marginal values of x = 0 and x = 1.

Within our first loop we set bounds for the range that Rc may be tested. We have RMax = 4,
Rmin = 0.01 and an initial Rtemp an arbitrary value between Rmin and RMax. The goal for our
function is to find the value for Rc up to some precision (which we have chosen to be 10−7)
for which the R(ρ) profile approaches the static string Rs[x] and never crosses it. We use
our parametrized R(ρ) from our numerical solution and test the value Rtemp. We take the
minimum value of the wall profile and check if R(ρ) dips below Rs[x], in which case we have
overshot, this is shown in Figure 4.2.
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String Radius as a function of ρ (undershot solution), x=0.2

Figure 4.1. ρ-profile of undershooting
solution when the guessed radius is smaller
than the critical radius.
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String Radius as a function of ρ (overshot solution), x=0.2

Figure 4.2. ρ-profile of overshooting solution
profile when the guessed Rc is larger than the
true Rc. The numerics breakdown at
7 < ρ < 8.

Our check for overshooting is then

Overshooting = [R(ρ)−Rs[x]< 0 or R(ρ)> 100], (212)

where the second condition captures the numerical breakdown happening often in the over-
shooting case (also in Figure 4.2). We will discuss this special case more later. Undershooting
is shown in Figure 4.1 where the R(ρ) never crosses Rs[x]. When we have overshoot =
true, we pick the new value for RMax to be the current Rtemp and then the new Rtemp to mark
the middle of the new interval between Rmin and RMax. In the case overshoot = false
we perform an nearly identical process but updating Rmin with Rtemp and setting the new Rtemp
to mark the middle of this interval instead. Schematically, we therefore apply the following
algorithm

I f [Overshoot] :
RMax = Rtemp

Rtemp = [RMax −Rmin]/2
Else :

Rmin = Rtemp

Rtemp = [RMax −Rmin]/2

(213)

When we find a value for Rtemp that satisfies our precision choice and does not overshoot, we
have found our complete solution.
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Figure 4.3. Partially converged profile solution. No cutoff has been applied, it is clear that the
solution is only accurate up until it reaches the static string radius.

We have an example of a correct solution shown in Figure 4.3, one might observe that even in
the best case our numerics break down after a certain point and we find the solution diverges
again from our static radius, we attribute this behaviour to numerical uncertainties. This
directs us to make some cutoff after which we will discard the rest of the numerical solution.
In showing our results we only pick the portion of our solution up until its closest point to the
static string radius, after which we simply connect it to Rs[x] as a piecewise function, shown
in Figure 4.4.

R(ρ)

Rs(x)

2 4 6 8 10

1

2

Rc

Piecewise Bubble Profile Solution, x= 0.2

Figure 4.4. The initial solution is used until it reaches its minimum, at which point the
function is transitioned into the x dependent static string solution.

We finally comment on a technical subtlety. We notice a numerical breakdown as well in the
overshooting solution, see Figure 4.2. For some guesses of Rc we may see what appears to be
undershooting as the profile does not pass Rs[x], however, instead of continuing to oscillate
smoothly as a truly undershot solution, the profile will grow extremely large as in Figure 4.5.
This results in the extra condition in (212), R(ρ)< 100.
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Figure 4.5. An overshot solution where R(ρ) has a numerical breakdown.

4.4.2 Discussion of Numerical Results

In Figure 4.6 we see how as the parameter x increases the action decreases and the critical
radius decreases as well. We can perform a fitting with NonLinearModelFit after
normalizing both sets of data such that at x = 0, Rc and SE are 1. We came up with the the
following proxy functions

b(x) = (1+a1x+a2x2 +a3x3 +a4x4)(1− x)3/2, (214)

Rc(x) =
(

5
6
+a1x+a2x2 +a3x3 +a4x4

)
(1− x)1/2 +

1
6
. (215)

We chose constants such that SE(x = 1) = 0, in accordance with our analytic solution. We
normalized our function such that Rc(x = 0) = 1 and the same normalization was applied to
Rs(x) for consistency. This meant that Rs(1) = 1

6 which we use to fix the overall constant
present in (215). The numerical fitting algorithm then gives the results in Table 4.1 for the

Table 4.1. Coefficient values for (214).

SE Estimate Standard Error
a1 -0.685221 0.00915718
a2 2.36137 0.0718124
a3 -4.05758 0.170456
a4 2.68696 0.123367

case of the Euclidian action, and the results in Table 4.2 for the critical string radius.
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Table 4.2. Coefficient values for (215).

Rc Estimate Standard Error
a1 -0.389933 0.00411724
a2 0.682105 0.025652
a3 -0.842578 0.0492224
a4 0.355474 0.0292485

Our results are depicted in Figure 4.6. They show that an increasing x value decreases the
bounce action. Without considering the prefactor "A" momentarily, this shows an increased
amplitude for vacuum tunneling with cosmic strings as a source as opposed to O(4) tunneling
(corresponding to x = 0).
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Critical Radius and Static RadiusWith Respect to x

Figure 4.6. Functions described in Table 4.2, Table 4.1, (215) and (214) are shown as well as
(189).

We shift our discussion to the actual bounce profiles of R(ρ) and R(ρ̂). The shape of the
profile as a function of ρ is not obviously understandable, especially with the use of imaginary
time. We use our definition of ρ to describe our profile as a function of z or t. The regions of
ρ and ρ̂ are joined together as a piecewise function. We can observe the profiles and see how
the parameter x alters the shape of the bubbles.
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Figure 4.7. The shape of the bubble from a string for 3 different values of x. The solution
transfers from ρ̂ (Dashed) to ρ (Solid).

Our final results are shown in Figure 4.7. We observe the R(ρ̂) solution noted by dashed lines
smoothly continuing into the R(ρ) solution. We see in the case of x = 0.01, the transition
from the expanded part of the string to the metastable portion is abrupt, whereas for larger
values of x the transition is far more smooth. We also note that for larger values of x the
metastable string radius increases. One can imagine the physical representation of these string
profiles by reflecting the image across the y-axis and then rotating it around the x-axis. This
procedure gives rise to a cylindrically symmetric bulge. For larger x we find the shape of the
bulge to be extremely subtle however the length along the string that the bubble occupies
grows.

4.4.3 Wall Velocity Analysis

We will now extend our discussion and consider the trajectory and velocity of the bubble
wall as time progresses. We can begin this by considering the plots of our solutions depicted
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in Figure 4.4. Here we take discrete values of z and then consider the string radius R as a
function of real time t. As before, dashed lines correspond to the region where t2 > z2 and the
analytically continued solution with imaginary argument ρ = iρ̂ is relevant for describing the
wall position. We see that in all cases the string core expands. The larger the value of z, the
later this expansion sets in.

1 2 3 4 5
t

1

2

3

4
R(z)

z = 0.01

z = 1.0

z = 3.0

z = 4.0

Rs(x)

Bubble Profile Evolution, x=0.01

z = 0.01

z = 1.0

z = 3.0

z = 4.0

Rs(x)

0 1 2 3 4 5
t

1

2

Rc

R(z)
Bubble Profile Evolution, x=0.25

z = 0.01

z = 1.0

z = 3.0

z = 4.5

Rs(x)

0 1 2 3 4 5
t

1

2

3

4

5
R(z)

Bubble Profile Evolution, x=0.75

z = 0.01

z = 1.0

z = 3.0

z = 4.5

Rs(x)

0 2 4 6 8 10
t

2

4

6

8

10
R(z)

Bubble Profile Evolution, x=0.99

Figure 4.8. Trajectory of the bubble wall at location z on the string over time. The solution
transfers from ρ̂ (dashed) to ρ (solid).

We quickly see an issue for smaller values of x where the trajectory seems to be super-luminal.
This is clear from the slope being greater than 1. We see for the largest parameter x the
velocity of the wall quite reasonably approaches c. Comparing our equivalent parameter value
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profiles in Figure 4.7, we see that the the position where the bubble transitions into the static
string radius is the position in Figure 4.8 where the trajectory passes above 45◦. We can
confirm this observation by computing the time derivative of our solution.
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Figure 4.9. The above plots show the velocity of the bubble wall in the direction
perpendicular to the length of the string at various distances from the position of nucleation.
We see the velocity peaks above c and then slowly approaches c from above.

We can then see much clearer how a small parameter x results in a larger peak in velocity
at the position along the length of the string where the radius is just beginning to expand.
Does this really mean that the bubble wall is propagating at a superluminal velocity? We
will argue that this is not the case. Instead, this result is a consequence of our oversimplified
method of computing the velocity of the bubble. In Figure 4.10 we consider two time slices
of a bubble expansion. We observe the position of the wall at t = 0.5 (red) and t = 2 (blue)
and visualize what we are plotting in Figure 4.9 in terms of the dashed vertical lines. The ∂tR
vector connects two patches on the bubble surface—these two patches are not equivalent. In
our most exaggerated case the shape of the bubble is approximately that of a sphere. We can
segment the bubble into regions of width z = 1, and as we approach the edge of the bubble,
the length of wall contained grows.
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Figure 4.10. The orange dashed lines are placed at equal intervals along the length of the
string. This illustrates that the dynamics of the wall are highly dependent on the z position of
the string segment.

Clearly, we must take a more careful approach in discussing different regions of the wall
along the z axis. As we look further from the axis of symmetry at z = 0 the velocity vector
from two equivalent patches accumulates a change in the z direction. To account for this
change we can compute the projection of our velocity onto the normal of the surface.
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Figure 4.11. In the left hand plot we see a bubble profile with the dashed box highlighting the
area shown on the right. The arrows denote the vectors found by simply differentiating with
respect to t or z whereas |v| shows the true trajectory of a patch on the bubble wall.
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If we observe a patch on the wall at z = 0 it is trivial that any acceleration will occur in the
radial direction as it lies exactly on the center of z symmetry. If we however observe a patch
some distance in one direction, say at z = 2.6 in Figure 4.11, as the bubble expands this patch
has an acceleration in the z direction as well as in the radial direction. To find the actual
expansion rate in terms of the radius of the bubble, we must project ∂tR onto the normal of
the surface. To begin, we identify the slope of the bubble surface to be ∂zR. The normal of
the surface forms a triangle with the vector ∂zR. We can decompose the triangle to find the
component from of the normal vector n̂. To make this more explicit, we first define the normal
vector as

n̂ =

(
1√

1+∂zR2
,

∂zR√
1+∂zR2

)
. (216)

It is straightforward to check that the normal vector n̂ has unit length. The normal projection
is then given by

n̂ ·∂tR =

(
∂tR√

1+∂zR2
,0

)
, (217)

and we define correspondingly

|⃗v(t,z)|= ∂tR√
1+(∂zR)2

. (218)

With this adjustment we can correct the velocity profiles such that they behave physically as
in Figure 4.12.
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Figure 4.12. Acceleration of a patch of wall located initially at various positions along the
string.
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With our adjustment we have been able to show that the bubble expansion is in fact sub-
luminal and thus behaves physically. Even for very small x values we see that the velocity of
any patch on the expanding string wall asymptotically approaches c.

4.5 Phenomenology
At this point we would like to contextualize our findings and discuss possible applications. In
order to do this we require some knowledge of the prefactor, the form of which is computed
for the O(4) case in [2]. The resulting amplitude with all terms is written

γ0 =
Γ0

V
=

(
B0

2π

)2[det ′[−∂ 2 +V ′′]

det[−∂ 2 +V ′′
+]

]−1/2

e−B0 , (219)

where V ′′
+ is the potential at the false minimum and V ′′ is at any point in the field. Here the

prefactor is made up of two components, let us first discuss the term
((

B[φ ]
2π

)1/2
)4

. The

exponential of 4 is representative of the directions of symmetry in the bounce action. That
is to say, the action is invariant under translations in the t,x,y,z directions. We see that each

symmetry gains a factor of
(

B[φ ]
2π

)1/2
. This term itself is dimensionless as is the bounce action

B0 from (63).

The second term requires some more tact. Considering the symmetries of our O(4) bounce
action, we again observe that the action is invariant under four directions of variation, each
of these will result in a vanishing eigenvalue. The ′ included in the numerator signifies the
omission of any vanishing eigenvalues (of which we have 4). Let us compute the mass
dimensions of the term, beginning with [det[−∂ 2 +V ′′

+]] = (M−2)β . Where β is the length
of the diagonal. We find the numerator to have [det ′[−∂ 2 +V ′′]] = (M−2)β−4. Our ratio of
determinants then has mass dimension M−2(β−4−β ) = M8. We find that the mass dimensions
of the prefactor are M−4. We take the result from [36] and write our prefactor replacing each
mass dimension with a factor Rc,

γ0 =
Γ0

V
∼
(

B0

2π

)2[ 1
R4

c

]
e−B0 . (220)

We now consider our unique case of the modified cylindrical symmetry, we find that there
are now only 2 directions of stability in the solution (t,z) and thus we have a new rate of
nucleation for such a case written

Γs

Ls
=

(
Bs[φ ]

2π

)[
det ′[−∂ 2 +V ′′]

det[−∂ 2 +V ′′
+]

]−1/2

e(−[Bs[φ ]]) ∼
(

b(x)B0

2π

)[
1

R2
c

]
e−B0b(x). (221)

We have that Γs is the nucleation rate per Hubble patch and Ls = H−1
s the average length of a

string in a Hubble patch. Here the nucleation rate Γs
Ls

describes the rate per unit length of the
string, as opposed to the O(4) case, which is per unit volume. Let us determine the order of
magnitude of the prefactor. Considering the symmetries of our bounce, a modified cylinder,
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we find two directions in which we can vary the action and conserve its value, those are τ and
z. These will resolve in 2 vanishing eigenvalues for the det ′[−∂ 2 +V ′′] term. Where in the
O(4) case we had a dimensionality of M−4 for the prefactor. In the O(2)×O(2) case we take
the dimensionality to be M−2 where the exponent is directly proportional to the number of 0
eigenvalues.

For both the O(4) and O(2)×O(2) cases there is a negative eigenvalue in the determinant.
This corresponds to the value of Rc, which when varied increases the magnitude of the bounce
action. The negative eigenvalues must be dealt with carefully as done in [2].

We introduce Ns, representing the number of Hubble length open strings found per Hubble
patch, we write Ls = Nsls where ls is one Hubble length. We would like to directly compare
the tunneling rates of γ0 and γs, to do so we must adjust such that we have γs =

Γs
V , nucleation

rate per Hubble patch

Γs

V
=

Γs

Ls

Nsls
V

. (222)

We have said that there is average length of string Ls per Hubble patch (with volume V =H−3
s ).

We can then write

γs =
Γs

V
=

(
b(x)B0

2π

)[
NsH2

s
R2

c

]
e−B0b(x). (223)

This γ0,s marks the tunneling probability per unit volume (V = H−3
0,s ) and Hubble time (t =

H−1
0,s ). In order to compare the overall tunneling contributions, Hs and H0 which note the

inverse lifetime of the vacuum. We can find this lifetime (t0,s) by multiplying the tunneling
amplitude per unit volume γ0,s by Hubble volume (H−3). We choose t0,s to be the lifetime of
the vacuum and tage the age of the universe, written as

t0,s =
1
Γs

=
1

V γ0,s
=

1
H−3

0,s γ0,s
, (224)

and
tage =

1
H
. (225)

If we choose t0,s = tage we can define the decay rate nicely as

H4
0,s = γ0,s. (226)

To find the conditions under which cosmic string decay dominates the rate of vacuum decay
we need ts < t0 written as

Γs

Γ0
> 1 → Hs

H0
> 1. (227)

We can write Hs and H0 from our γ0 and γs definitions and our relationship from (220), (223)
and (226) respectively. For the O(2)×O(2) case we have

γs = H4
s =

(
b(x)B0

2π

)[
NsH2

s
R2

c

]
e−B0b(x), (228)

54



eliminating a factor of H2
s and taking the square root, we find

Hs =

√
b(x)B0Ns

Rc
√

2π
e−

1
2 B0b(x). (229)

For the O(4) decay we find

γ0 = H4
0 =

(
B0

2π

)2[ 1
R4

c

]
e−B0 , (230)

and then

H0 =

√
B0

Rc
√

2π
e−

1
4 B0 . (231)

We can then write the condition

1 <
Hs

H0
=
√

Nsb(x)e−
1
4 B0(2b(x)−1). (232)

We translate this condition into some bounds on b(x). Taking Ns ∼ 1 as the assumed number
of cosmic strings per Hubble patch, we find b(x)≤ 1

2 to conserve our condition in (232). We
can see from (214) and Figure 4.6 that our bounds on x are

0.4 ≤ x ≤ 1. (233)

This inequality, one of the main results of the project, shows actual applicable constraints on
the conditions in which this decay is possible.
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5 Conclusion
We began our project with two main goals. First, computing a new bounce solution corre-
sponding to the nucleation of a bubble configuration describing the expansion of a metastable
cosmic string in the TWL, where the core of the string sits in the true vacuum and the outside
of the string in the false vacuum. Our second question was how does the tunneling rate of this
O(2)×O(2) symmetric bounce solution compare to the previously discussed O(4) symmetric
Coleman bounce. On the path to answering our two main questions we must confirm a selec-
tion of equivalences and estimations. In computing the bounce for the O(2)×O(2) symmetry
in the TWL, we write an ansatz for the field as the Lorentz-boosted thin wall profile. However
before solving the more difficult O(2)×O(2) bounce, we took a step back and considered the
conventional case of the spherical bubble. Here our first task was computing the action of the
O(3)× τ symmetry with the same Lorentz boost and confirming that this is equivalent to the
O(4) symmetric case, both again in the TWL. This was confirmed in (63) and (87). In our
computations we take the TWL to mean that in the EOM (51) the "friction term" vanishes
in the wall region. It is this condition that leads us to our equivalence. We prove this to be
true when the height of the potential barrier is much larger than the difference of potentials
between the true and false minima. We also show that within the wall region, the friction term
is very small and the kinetic and potential terms in the EOM are each independently larger
than the friction term.

In Section 3, we reviewed the O(2) symmetric cosmic string. With such a symmetry we
acquire a new winding contribution, controlled by the winding number n, and write two new
ansatz for the gauge field a (109) and scalar field f (106). We evaluate the EOM for such a
symmetry and find (128), (127). We find in accordance with the literature, that the local case
results in a magnetic flux through the core of the string and most importantly vanishing energy
outside of the string. The global case, found by setting the gauge field a = 0 everywhere,
results in a diverging energy outside of the string regularized by the string separation scale.
We continue by describing the string tension µ in terms of the wall tension σ and then describe
a derivation of the deficit angle around a cosmic string. A brief discussion of astrophysical
effects from the cosmic string follows. While this section provided mostly a review on cosmic
strings, as a non-standard technique not commonly discussed in the literature we used the
TWL to describe the strings.

Finally we arrive at our computation of the bounce action for O(2)×O(2) symmetric bubbles.
We choose to proceed in the global case out of simplicity. However the local case has been
computed in follow up work in [31]. The EOM in the global case is (164) where there is a
winding term and a friction term. This equation is valid in the wall region (172). We compute
the action to find a bounce action with a single parameter dependence (191), given by x. As
one of our main results we provide a semi-analytic proxy for the bounce action as a function
of x. We analytically verify the validity of this up to the x → 0 limit. We expect to return
to the O(4) symmetric result, which we do in (196). We find the bounce action to decrease
with an increased x parameter, this is interpreted as an increased tunneling probability as the
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bubble shape is less spherical and instead more oblong with a preexisting vacuum sitting at
the center. These results are shown in Figure 4.6, and the bubble profile in Figure 4.7. Our
last results follow from a numerical evaluation of the action over the τ,z coordinates and find
a solution R(ρ) for the profile of the bubble. We spent some time showing the wall velocity
of our bubble does not reach any impossible values. We analyzed the shape of the wall profile
in Figure 4.11 and found the actual velocity of a section of the wall in (218). We finally
determine the trajectory of the bubble expansion shown in Figure 4.12.

Our final phenomenology discussion considers the lifetime of the vacuum. We found some
bounds (233) where a vacuum containing a string defect is more likely to decay via the
string core tunneling than the Coleman vacuum tunneling. We consider the prefactor and its
contribution to the overall tunneling rate for our broken symmetry compared to the spherical
symmetry. The main result being (233) defining the bounds on our parameters where the
cosmic string tunneling will dominate the total tunneling rate.

An interesting result from this research is the particular mechanism for string decay and its
consequences for the stochastic GW signal produced by these decaying strings. We might
refer to the results from the 15 year NANOGrav pulsar timing array data set [48], where the
authors detect stochastic GW signals over a range of nano-Hertz frequencies. Their results
show a decreased strength in signal at lower frequencies. However a signal from a network of
local-strings, produced from cusps, oscillating loops and kinks, leads to an approximately
constant power spectrum, incompatible with the increasing slope. If we are to take these
results at face value, they eliminate the possibility for local strings to exist at all at late times
provided the string tension is not much smaller than the GUT scale, ie: << 1015GeV [48].
The decay mechanism discussed is one possible explanation for this discrepancy. The strings
could exist at early times but be eliminated in the phase transition discussed here, suppressing
the GW signals at later times and smaller frequencies. This cutoff can be accounted for by
any string decay mechanism at a certain point in time, for example the earlier mentioned
monopole-antimonopole decay from [36], where the decay of the strings will suppress the
GW signal at late times [49–52]. Moreover as was discussed in [31], the bubbles from the
cosmic string seeding discussed here are not spherical1. This would result in a GW signal
distinct from those produced by other sources such as Coleman bubble vacuum decay. In
particular, a single Coleman bubble due to its spherical geometry has vanishing quadrupole
moment and does not emit GW except during bubble collisions [53].

Cosmic strings are very interesting objects that have recently been gaining interest. Our topic
can be explored further, the tunneling rate of the local string with fully relativistic expansion
has yet to be described. We use the TWL frequently to simplify calculations however the
omission of this simplification could be explored. A phase transition such as the one we
discussed release energy, this in particular is one of the theorized ways to resolve the Hubble
tension [54]. As mentioned previously the nonspherical bubbles lead to unique GW signals
which one can look for in pulsar-timing arrays [31, 55]. Overall there remains much to be
explored in the topic of seeded phase transitions, we can only look forward to learning more.

1The cited paper focuses on the local cosmic string in it’s GW discussion, whereas this thesis focuses on the
global string and does not discuss GW production.
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