Helical magnetic fields in the early universe

- What is magnetic helicity
- The myth of catastrophic quenching
- Magn helicity in decaying turbulence
- The chiral magnetic effect
- Gravitational waves from the resulting turbulence
Curling tendril
→ Climbing plant

Biophysics:
Helix
Chirality
The degree of knottedness of tangled vortex lines

By H. K. MOFFATT
Department of Applied Mathematics and Theoretical Physics,
Silver Street, Cambridge

(Received 17 May 1968)

Let \( \mathbf{u}(\mathbf{x}) \) be the velocity field in a fluid of infinite extent due to a vorticity distribution \( \mathbf{\omega}(\mathbf{x}) \) which is zero except in two closed vortex filaments of strengths \( \kappa_1, \kappa_2 \). It is first shown that the integral

\[
I = \int \mathbf{u} \cdot \mathbf{\omega} \, dV
\]

is equal to \( \alpha \kappa_1 \kappa_2 \), where \( \alpha \) is an integer representing the degree of linkage of the two filaments; \( \alpha = 0 \) if they are unlinked, \( \pm 1 \) if they are singly linked. The invariance of \( I \) for a continuous localized vorticity distribution is then established for barotropic inviscid flow under conservative body forces. The result is interpreted in terms of the conservation of linkages of vortex lines which move with the fluid.
Helical structures on the Sun (X-ray emission)

Figure 1. The degree of linkage of two closed filaments \( C_1, C_2 \). The choice of sign in (b), (c) is determined by the relative orientation of the two filaments.

\[ \alpha_{12} = 0 \quad \alpha_{12} = -1 \quad \alpha_{12} = 2 \]

Figure 2. Decomposition of a knotted vortex line. To get from (a) to (b), two equal and opposite vorticity segments are inserted between the points \( A \) and \( B \). \( C_1 \) and \( C_2 \) are evidently unknotted but linked.

† The term ‘winding number’ (anzahl der umschlingungen) and the expression given below for it, equation (11), can be traced to a paper by Gauss (1833) which was concerned with the magnetic field produced by two or more electric current circuits. It is the simplest (but by no means the only) topological invariant of two linked curves (see, for example, Crowell & Fox 1964, and the references given therein).
Moffatt coined the term in hydro/MHD

The quantity $\mathbf{u} \cdot \mathbf{\omega}$ admits a simple, essentially kinematical, interpretation. The fluid particles in any small volume element $dV$ undergo at any instant a superposition of three motions: the (uniform) velocity $\mathbf{u}_0$ of any representative point 0 of the element, an irrotational uniform strain $\nabla \phi$ relative to $I$, and a rigid body rotation $2\mathbf{\omega}_0$ where $\mathbf{\omega}_0$ is the vorticity at 0. The streamlines of the flow $\mathbf{u} - \nabla \phi$ passing near 0 are (locally) helices about the streamline through 0, and the contribution

$$\mathbf{u} \cdot \mathbf{\omega} dV \approx \mathbf{u}_0 \cdot \mathbf{\omega}_0 dV$$

to $I$ from $dV$ is positive or negative according as the screw of these helices is right-handed or left-handed. The term *helicity* is used in particle physics for the scalar product of the momentum and spin of a particle, and it would seem to be a natural candidate in the present context to describe the quantity $\mathbf{u} \cdot \mathbf{\omega} dV$; the quantity $\mathbf{u} \cdot \mathbf{\omega}$ may then be described as the *helicity per unit volume* of the flow. Equation (17) then expresses the result that the total helicity within any closed vortex surface (on which $\mathbf{\omega} \cdot \mathbf{n} = 0$) is constant.
Magnetic helicity measures linkage of flux

\[ H = \pm 2 \Phi_1 \Phi_2 \]

Therefore the unit is Maxwell squared

\[ H = \int \mathbf{A} \cdot \mathbf{B} \, dV \]

\[ \mathbf{B} = \nabla \times \mathbf{A} \]

\[ H_1 = \int_{L_1} \mathbf{A} \cdot d\ell \int_{S_1} \mathbf{B} \cdot d\mathbf{S} \]

\[ = \int_{S_2} \nabla \times \mathbf{A} \cdot d\mathbf{S} = \Phi_2 \]

\[ = \Phi_1 \]
What produces helicity?

Cyclones:
Down: faster
Up: slower

\[ \omega = \nabla \times \mathbf{u} \]

\[ \langle \omega \cdot \mathbf{u} \rangle < 0 \quad \text{and} \quad \langle \omega \cdot \mathbf{u} \rangle > 0 \]

North
South

Equator

No preferred helicity, but + and – possible if result of instability
Catastrophic quenching

\[ \frac{d}{dt} \langle A \cdot B \rangle = -2\eta \langle J \cdot B \rangle \]

\[ \langle J \cdot B \rangle = \langle \bar{J} \cdot \bar{B} \rangle + \langle j \cdot b \rangle \]

\[ \langle \bar{J} \cdot \bar{B} \rangle \approx -k_1 \langle \bar{B}^2 \rangle, \quad \langle j \cdot b \rangle \approx k_f \langle b^2 \rangle \]

\[ k_1^{-1} \frac{d}{dt} \langle \bar{B}^2 \rangle = -2\eta k_1 \langle \bar{B}^2 \rangle + 2\eta k_f \langle b^2 \rangle \]

\[ \langle \bar{B}^2 \rangle = \langle b^2 \rangle \frac{k_f}{k_1} \left[ 1 - e^{-2\eta k_1^2(t-t_s)} \right] \]
Large-scale magnetic fields from hydromagnetic turbulence in the very early universe

Axel Brandenburg
Nordhaus, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

Kari Enqvist
Department of Physics, P.O. Box 9, FIN-00014 University of Helsinki, Finland

Poul Olesen
The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
(Received 1 February 1996)

Energy momentum tensor

\[ T^{\mu \nu} = (p + \rho) U^\mu U^\nu + p g^{\mu \nu} \]

\[ + \frac{1}{4 \pi} \left( F^{\mu \sigma} F_{\sigma}^{\nu} - \frac{1}{4} g^{\mu \nu} F_{\lambda \sigma} F^{\lambda \sigma} \right), \]

Conformal time, rescaled equations

\[ \tilde{t} = \int dt / R. \quad S = (p + \rho) \gamma^2 v. \]

\[ \tilde{S} = R^4 S, \quad \tilde{p} = R^4 p, \quad \tilde{\rho} = R^4 \rho, \quad \tilde{B} = R^2 B, \]

\[ \tilde{J} = R^3 J, \quad \text{and} \quad \tilde{E} = R^2 E. \]

\[ \frac{\partial \tilde{S}}{\partial \tilde{t}} = - (\nabla \cdot v) \tilde{S} - (v \cdot \nabla) \tilde{S} - \nabla \tilde{p} + \tilde{J} \times \tilde{B}. \]

\[ \frac{\partial \tilde{B}}{\partial \tilde{t}} = - \nabla \times \tilde{E}, \quad \nabla \cdot \tilde{B} = 0, \]

the MHD equations in an expanding universe with zero curvature are the same as the relativistic MHD equations in a nonexpanding universe, provided the dynamical quantities are replaced by the scaled “tilde” variables, and provided conformal time \( \tilde{t} \) is used. The effect of this is, as usual, that
Kolmogorov turbulence \( \rightarrow \) forward cascade

**nonlinearity**

\[
\left( \cos kx \right)^2 = \frac{1}{2} \cos 2kx + \frac{1}{2}
\]

\( k \rightarrow 2k \)

**constant flux \( \varepsilon \) [cm\(^2\)/s\(^3\)]**

\[
\int E(k)dk = \frac{1}{2} \left\langle u^2 \right\rangle \quad [\text{cm}^3/\text{s}^2]
\]

\[
E(k) = C_k \varepsilon^a k^b
\]

cm: \( 3 = 2a - 1 \)

s: \( 2 = 3a \)

\( a = 2/3, \ b = -5/3 \)
Magnetic helicity: inverse cascade

Initial slope

$E \sim k^4$

Christensson et al.
(2001, PRE 64, 056405)
Helical decay law: Biskamp & Müller (1999)

\[ H = EL = \text{const} \]

\[ \varepsilon = U^3 / L = E^{3/2} / L \]

\[ \varepsilon = -\frac{dE}{dt} \]

\[ \varepsilon = -\frac{dE}{dt} = E^{3/2} / L = E^{5/2} / H \]

\[ E \propto t^{-2/3} \]
Forced – decaying

Helical – nonhelical
Self-similar turbulent decay

\[ E_M(k \xi_M(t), t) \approx \xi_M^{-\beta_M} \phi(k \xi_M). \]

\[ \int \dot{E}_i(k, t) \, dk = \mathcal{E}_i \quad \xi_i(t) = \int_0^\infty k^{-1} E_i(k, t) \, dk / \mathcal{E}_i(t) \]

Instantaneous scaling exponents

\[ p_i(t) = \frac{d \ln \mathcal{E}_i}{d \ln t}, \quad q_i(t) = \frac{d \ln \xi_i}{d \ln t}, \]

\[ 1 + \beta_M = p_M / q_M \]

<table>
<thead>
<tr>
<th>$\beta$</th>
<th>$p$</th>
<th>$q$</th>
<th>inv.</th>
<th>dim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$10/7 \approx 1.43$</td>
<td>$2/7 \approx 0.286$</td>
<td>$\mathcal{L}$</td>
<td>$[x]^7 [t]^{-2}$</td>
</tr>
<tr>
<td>3</td>
<td>$8/6 \approx 1.33$</td>
<td>$2/6 \approx 0.333$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$6/5 = 1.20$</td>
<td>$2/5 = 0.400$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$4/4 = 1.00$</td>
<td>$2/4 = 0.500$</td>
<td>$\langle A_{2D}^2 \rangle$</td>
<td>$[x]^4 [t]^{-2}$</td>
</tr>
<tr>
<td>0</td>
<td>$2/3 \approx 0.67$</td>
<td>$2/3 \approx 0.667$</td>
<td>$\langle A \cdot B \rangle$</td>
<td>$[x]^3 [t]^{-2}$</td>
</tr>
<tr>
<td>-1</td>
<td>$0/2 = 0.00$</td>
<td>$2/1 = 1.000$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Collapses spectra and $pq$ diagrams

\[ E_k(k, t) \quad k/k_0 \quad 10^{-12} \]

\[ F_k(k, t) \quad k/k_0 \quad 10^{-5} \]

\[ G_k(k, t) \quad k/k_0 \quad 10^{-8} \]

\[ \Phi_k(k)/\Phi_\infty \quad 10^{-4} \]

\[ \beta=4 \quad \beta=3 \quad \beta=2 \quad \beta=1 \quad \beta=0 \]

\[ p(t) \quad q(t) \]
Chiral magnetic effect: caused by chirality of fermions

Electrons have handedness

- Right-handed:
  \[ p \rightarrow S \]

- Left-handed:
  \[ p \rightarrow S \]

But also spontaneous spin flip unless

\[ k_B T >> m_e c^2 \]

\[ 6 \times 10^9 K \]
Chiral magnetic effect

In the presence of $B$-field chiral electrons produce a current $J = \ldots + \mu B$ with

$$\mu = 24 \alpha_{em} (n_L - n_R) (\hbar c / k_B T)^2$$

$\alpha_{em}$ is the fine structure constant

$\rightarrow$ quantum effect

$\mu$ is a pseudoscalar

Leads to a dynamo effect

$$\frac{\partial A}{\partial t} = \eta (\mu B - \nabla \times B) + \mathbf{U} \times \mathbf{B}$$

$$\sigma = |\mu k| - \eta k^2$$
Total chirality conserved

Uncurled induction equation & chemical potential

\[ \frac{\partial A}{\partial t} = \eta (\mu B - \nabla \times B) + U \times B, \]

\[ \frac{D\mu}{Dt} = -\lambda \eta (\mu B - \nabla \times B) \cdot B + D \nabla^2 \mu - \Gamma_f \mu, \]

Coupling between electromagnetic field and chem potential

\[ \lambda \equiv 3 \hbar c (8\alpha_{em} / k_B T)^2 \]

Conservation equation

\[ \frac{1}{2}\lambda \langle A \cdot B \rangle + \langle \mu \rangle = \text{const} \equiv \mu_0 \quad (\text{for } \Gamma_f \ll \eta \mu_0^2) \]

Therefore

\[ \langle B^2 \rangle \xi_M \lesssim \mu_0 / \lambda. \]
Total system of equations

Momentum & continuity equations

\[ \rho \frac{DU}{Dt} = (\nabla \times B) \times B - \nabla p + \nabla \cdot (2\rho \nu S), \quad (4) \]

\[ \frac{D\rho}{Dt} = -\rho \nabla \cdot U, \quad (5) \]

Together with:

\[ \frac{\partial A}{\partial t} = \eta (\mu B - \nabla \times B) + U \times B, \]

\[ \frac{D\mu}{Dt} = -\lambda \eta (\mu B - \nabla \times B) \cdot B + D \nabla^2 \mu - \Gamma_f \mu, \]

\[ \langle \mu_5 \rangle \rightarrow \langle \nu \mu (B \cdot J) \rangle \rightarrow \langle B^2/2 \rangle \rightarrow \langle u \cdot (J \times B) \rangle \rightarrow \langle \rho u^2/2 \rangle \rightarrow \langle (\nu u + \alpha \mu)(B \cdot J) \rangle \rightarrow \langle B^2/2 \rangle \]

\[ \varepsilon_\mu \rightarrow \varepsilon_M \rightarrow \varepsilon_K \rightarrow \tilde{\varepsilon}_M \]
**Characteristic velocities**

Two velocities from chiral magnetic effect

\[ v_\lambda = \mu / (\bar{\rho} \lambda)^{1/2}, \quad v_\mu = \mu \eta, \]

Different orderings

\[ c_s > v_\lambda > v_\mu > \eta k_1 \quad \text{(regime I)}, \]
\[ c_s > v_\mu > v_\lambda > \eta k_1 \quad \text{(regime II)}. \]
Dimensional arguments

- \([E(k,t)] = [ho] \text{ cm}^3 \text{ s}^{-2} = g \text{ s}^{-2}\)
- \(E(k,t) = C_\mu \rho \mu^a \eta^b\)
- \(\text{cm}: 3 = -a + 2b\)
- \(\text{s}: -2 = -b\)
- \(\Rightarrow b = 2, a = 2b - 3 = 4 - 3 = 1\)
- \(E(k,t) = C_\mu \rho \mu \eta^2\)
- \(\Rightarrow\) to determine \(C_\mu\) from simulations
The spectrum from chiral effect

Spectrum build-up from high wavenumbers

\[ E_M(k, t) \]

Governed solely by chiral chemical potential

\[ E_M(k, t) = C_\mu \, \bar{\rho} \mu^3 \eta^2 k^{-2}, \]
Eventual saturation

- \([E(k,t)] = g \, s^{-2}\)
- \(E(k,t) = C_\lambda \, \rho^a \mu^b \lambda^c\)
- \(g: \, 1 = a - c\)
- \(cm: \, 0 = -b - c\)
- \(s: \, -2 = 2c\)
- \(\Rightarrow c = -1, \, b = -c = 1, \, a = 1 + c = 0\)
- \(E(k,t) = C_\lambda \, \mu/\lambda\)
- \(\Rightarrow\) to determine \(C_\lambda\) from simulations
The final spectrum

\[ E_M(k, t) \]

- \[ C_\lambda \frac{\mu}{\lambda} \]
- Saturation, large-scale magnetic fields
- \( k_\lambda \sim \mu \eta (\bar{\rho} \lambda)^{1/2} \)
- turbulent scales
- \( \sim k^{-2} \)
- \( C_\mu \bar{\rho} \mu \eta^2 \)
- \( k = \mu \)
- instability scale
Inverse cascade!

Growth at one wavenumber

Then: saturation caused by initial chemical potential
Early universe: use conservation law

Conservation equation

\[ \frac{1}{2} \lambda \langle A \cdot B \rangle + \langle \mu \rangle = \text{const} \equiv \mu_0 \quad \text{(for } \Gamma \ll \eta \mu_0^2) \]

\[ (n_L - n_R) + \frac{4 \alpha_{\text{em}}}{\hbar c} \langle A \cdot B \rangle = \text{const.} \]

Maximally helical:

\[ \langle B^2 \rangle \xi_M \lesssim \mu_0 / \lambda. \]

\[ \langle B^2 \rangle \xi_M = \epsilon (k_B T_0)^3 (\hbar c)^{-2}, \]
Magnetic helicity

\[ \langle B^2 \rangle \xi_M = \frac{\hbar c}{4\alpha_{\text{em}} g_\star} g_0 n_{\gamma 0} N_f = 5 \times 10^{-38} \frac{N_f}{10} g_{100}^{-1} \text{G}^2 \text{Mpc}. \quad (17) \]

Here, \( g_0 = 3.36 \) and \( n_{\gamma 0} = \frac{2\zeta(3)}{\pi^2} \left( \frac{k_B T_0}{\hbar c} \right)^3 = 411 \text{ cm}^{-3} \)

Inverse length scale

\[ |\mu| \ll 4\alpha_{\text{em}} \frac{k_B T}{\hbar c} \approx 1.5 \times 10^{14} T_{100} \text{ cm}^{-1}. \]
Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars

Andrii Neronov* and Ievgen Vovk

Magnetic fields in galaxies are produced via the amplification of seed magnetic fields of unknown nature. The seed fields, which might exist in their initial form in the intergalactic medium, were never detected. We report a lower bound $B \geq 3 \times 10^{-16}$ gauss on the strength of intergalactic magnetic fields, which stems from the nonobservation of GeV gamma-ray emission from electromagnetic cascade initiated by tera–electron volt gamma rays in intergalactic medium. The bound improves as $\lambda_B^{-1/2}$ if magnetic field correlation length, $\lambda_B$, is much smaller than a megaparsec. This lower bound constrains models for the origin of cosmic magnetic fields.

Fig. 2. Light, medium, and dark gray: known observational bounds on the strength and correlation length of EGMF, summarized in (25). The bound from Big Bang nucleosynthesis (BBN) is from (2). The black hatched region shows the lower bound on the EGMF derived from observations of 1ES 0347-121 (cross-hatching) and 1ES 0229+200 (single diagonal hatching) in this paper. Orange hatched regions show the allowed ranges of $B$ and $\lambda_B$ for magnetic fields generated at the epoch of inflation (horizontal hatching), the electroweak phase transition (dense vertical hatching), QCD phase transition (medium vertical hatching), and epoch of recombination (light vertical hatching) (25). White ellipses show the range of measured magnetic field strengths and correlation lengths in galaxies and galaxy clusters.

- Chiral magnetic effect alone may be too weak to explain B-field
- But the magnetic stress could still explain gravitational waves
Cosmological GWs

Amplification of gravitational waves in an isotropic universe

L. P. Grishchuk

State Astronomical Institute
(Submitted April 1, 1974)

It is shown that weak gravitational waves in a nonstationary isotropic universe can be amplified to a greater degree than indicated by the adiabatic law. It is a necessary (but not a sufficient) condition for the amplification that there should exist such a stage in the evolution of the universe when the characteristic time for change in the background metric is less than the period of the wave. In an expanding universe the wave is the more amplified the more strongly does the rate of evolution of the universe differ from the one which is dictated by matter with the equation of state \( p = \epsilon / 3 \), and the earlier the wave had been “started.” The superadiabatic amplification of gravitational waves denotes the possibility of creation of gravitons. An exceptional position is occupied by the “hot” isotropic universe with \( p = \epsilon / 3 \), in which the superadiabatic amplification of gravitational waves and the production of gravitons is impossible. An estimate is made of the converse reaction of the gravitons on the background metric. Apparently, the production of gravitons forbids at least those of the isostropic singularities near which \( p > \epsilon / 3 \).
Correspondence of spectra

\[
(\partial_t^2 - c^2 \nabla^2) h_{ij}(x, \bar{t}) = 6 \frac{T_{ij}^{TT}(x, \bar{t})}{\bar{t}}
\]

\[
T_{ij} = (p + \rho) \gamma^2 u_i u_j - B_i B_j + (p + B^2/2) \delta_{ij}
\]

- If spectral slope of \( B \) is \(-5/3\), then
- Spectral slope of \( B^2 \) is \(-5/3 - 2 = -11/3\)
- But for slope 4, we don’t get \( 4 - 2 = 2 \), but 0.
Comparison with LISA sensitivity limits

- Frequency $\sim 3$ mHz
  - Slope corresponds to turbulence spectrum
  - Magnetic energy 10% or 1% or radiation
- Observable w/ LISA
  - Arm length 2-5 million km
  - Duration 2 or 5 yr
Quadratic scaling

- Acoustic driving $\rightarrow$ strongest GW field
- Quadratic scaling
GWs from chiral magnetic effect
Circular Polarization of Gravitational Waves from Early-Universe Helical Turbulence

Tina Kalniashvili,1,2,3,4,5* Axel Brandenburg,5,6,2,1 Giga Gogoberidze,2 Sayan Mandal,7,2 and Alberto Roper Pol8,2

1McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2Faculty of Natural Sciences and Medicine, Ilia State University, 0194 Tbilisi, Georgia
3Abastumani Astrophysical Observatory, Tbilisi, GE-0179, Georgia
4Department of Physics, Laurentian University, Sudbury, ON P3E 2C, Canada
5Nordita, KTH Royal Institute of Technology and Stockholm University, 10691 Stockholm, Sweden
6Department of Astronomy, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
7Physics and Astronomy Department, Stony Brook University, Stony Brook, New York 11794, USA
8Université de Paris, CNRS, Astrophysique et Cosmologie, Paris, F-75013, France

(Dated: November 12, 2020)

- Magnetic helicity causes circular polarized GWs
- Can reach 100%, and inverse cascade apparent
Correspond to $+$ and $x$ modes

\[
\left(\begin{array}{c}
\langle h_+(n)h_+(n')\rangle \\
\langle h^*_+(n)h_+(n')\rangle \\
\langle h^*_+(n)h_+(n')\rangle \\
\langle h_+(n)h^*_x(n')\rangle \\
\langle h_x(n)h^*_x(n')\rangle
\end{array}\right)
\]

\[
\frac{\delta_{drc}(n - n')}{4\pi}
\left(\begin{array}{cc}
I + Q & U - iV \\
U + iV & I - Q
\end{array}\right)
\]

Seto (2006)
Circular polarization in space & time

- Both plus and cross polarization together
- Combine the two as a function of space & time
- Get circular polarization
Conclusions

- Magnetic helicity nearly perfectly conserved
  - Catastrophic quenching in periodic boxes
- Inverse cascade in decaying turbulence
  - Important in early Universe
- Can be initiated by chiral magnetic effect (CME)
  - But may not yet explain lower observational limits
- CME also drives gravitational waves
  - Currently somewhat too weak
Inverse cascading