Nonhelical inverse transfer of a decaying turbulent magnetic field

Cosmological magnetic fields
Turbulent decay
Nonuniversality of MHD
Weak and strong turbulence
Helical, nonhelical, hydro

Axel Brandenburg (Nordita ↔ CU Boulder)
with T. Kahniashvili and A. Tevzadze
PRL 114, 075001 (2015)
Motivation

Early universe

Energy momentum tensor

\[T^{\mu \nu} = (p + \rho) U^{\mu} U^{\nu} + pg^{\mu \nu} \]

\[+ \frac{1}{4 \pi} \left(F^{\mu \sigma} F_{\nu \sigma} - \frac{1}{4} g^{\mu \nu} F_{\lambda \sigma} F^{\lambda \sigma} \right), \]

Conformal time, rescaled equations

\[\tilde{t} = \int dt / R. \quad \tilde{S} = (p + \rho) \gamma^2 v. \]

\[\frac{\partial \tilde{S}}{\partial \tilde{t}} = - (\nabla \cdot v) \tilde{S} - (v \cdot \nabla) \tilde{S} - \nabla \tilde{p} + \tilde{J} \times \tilde{B}. \]

\[\frac{\partial \tilde{B}}{\partial \tilde{t}} = - \nabla \times \tilde{E}, \quad \nabla \cdot \tilde{B} = 0, \]

the MHD equations in an expanding universe with zero curvature are the same as the relativistic MHD equations in a nonexpanding universe, provided the dynamical quantities are replaced by the scaled “tilde” variables, and provided conformal time \(\tilde{t} \) is used. The effect of this is, as usual, that...
Helical vs nonhelical 3-D decay

Initial slope
\(E \sim k^4 \)

Christensson et al.
(2001, PRE 64, 056405)
Helical decay law: Biskamp & Müller (1999)

\[H = EL = \text{const} \]

\[\varepsilon = \frac{U^3}{L} = \frac{E^{3/2}}{L} \]

\[\varepsilon = -\frac{dE}{dt} \]

\[\varepsilon = -\frac{dE}{dt} = \frac{E^{3/2}}{L} = \frac{E^{5/2}}{H} \]

\[E \propto t^{-2/3} \]

\[L \propto t^{+2/3} \]
Nonhelical Inverse Transfer of a Decaying Turbulent Magnetic Field

Axel Brandenburg,1,2,* Tina Kahniashvili,3,4,5,* and Alexander G. Tevzadze6,*

1Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
2Department of Astronomy, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
3The McWilliams Center for Cosmology and the Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA
4Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C, Canada
5Abastumani Astrophysical Observatory, Ilia State University, 3-5 Cholokashvili Avenue, Tbilisi GE-0194, Georgia
6Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi 0128, Georgia

\[E_{WT}(k, t) = C_{WT}(\epsilon \nu_A k_M)^{1/2} k^{-2} \]
Weak MHD turbulence, because B strong

Lee, Brachet, Pouquet, Mininni, Rosenberg (2010)
Inverse transfer similar to helical MHD

\[T_{kpq} = \langle J^k \cdot (u^p \times B^q) \rangle = -\langle u^p \cdot (J^k \times B^q) \rangle \]

Nonhelical gain ½ of helical case

Gain from SS \(B \) Mediated by LS \(u \)

Kinetic gain From \(B \) field
On Inverse Cascades and Primordial Magnetic Fields

P. Olesen

The Niels Bohr Institute, University of Copenhagen
Blegdamsvej 17, DK-2100 Copenhagen Ø Denmark

Next we want to use the well known self-similarity property of the non-relativistic Navier-Stokes or MHD-equations,

\[x \rightarrow lx, \quad t \rightarrow l^{1-h}t, \quad v \rightarrow l^h v, \quad \nu \rightarrow l^{1+h} \nu, \quad \mathbf{B} \rightarrow l^h \mathbf{B}, \quad \eta \rightarrow l^{1+h} \eta, \]

(5)

where \(\nu \) is the kinetic and \(\eta \) is the Ohmic diffusion. Using the substitutions \(x = lx' \) and \(y = ly' \), we obtain from eqs. (2) and (3)

\[
E(k/l, l^{1-h}t, Ll, K/l) = l^d \frac{2\pi k^2}{(2\pi)^3} \int_{2\pi/K}^{L} d^3x' d^3y' \ e^{ik(x'-y')} <v(lx', l^{1-h}t) \ v(ly', l^{1-h}t) > \\
= l^{d+2h} E(k, t, L, K).
\]

(6)

primordial magnetic fields, and for the effect of diffusion. In general, if the initial spectrum is \(k^\alpha \), then in the “inertial” range, for \(\alpha > -3 \) there is an inverse cascade, whereas for \(\alpha < -3 \) there is a forward cascade.
Does initial spectrum determine decay?

\[E_K(k, t) \sim E_M(k, t) \sim k^{\alpha \psi(k^{(3+\alpha)/2}t)}. \] \hspace{1cm} (4)

Integrating over \(k \) yields the decay law of the energies as

\[\mathcal{E}_K(t) = \int E_K(k, t) \, dk \sim \int k^{\alpha \psi(k^{(3+\alpha)/2}t)} \, dk. \] \hspace{1cm} (5)

Introducing \(\kappa = kt^q \) with \(q = 2/(3 + \alpha) \), we have

\[\mathcal{E}_K(t) \sim t^p \int k^{\alpha \psi(\kappa)} \, d\kappa, \] \hspace{1cm} (6)

where \(p = (1 + \alpha)q \). The integral scales like \(k_K \sim t^q \) with \(q = 2/(3 + \alpha) \). Several parameter combinations are given in Table II.

\[
\begin{array}{ccc}
\alpha & p & q \\
4 & 10/7 & 2/7 \\
3 & 8/6 & 2/6 \\
2 & 6/5 & 2/5 \\
1 & 4/4 & 2/4 \\
0 & 2/3 & 2/3 \\
\end{array}
\]

\[q = 1 - p/2 \]
Rescaled spectra: self-similar

Alternative interpretation of Olesen’s scaling relation

Christensson et al.
(2001, PRE 64, 056405)

Initial slope

$E \sim k^4$

FIG. 2. The magnetic scaling function $g_M(k\xi)$ described in the text, Eq. (13), versus $k\xi$. The straight lines indicate the power laws $\propto (k\xi)^{4.0}$ and $\propto (k\xi)^{-2.5}$, respectively.

$$E_M(k,t) = \xi(t)^{-q}g_M(k\xi). \quad (13)$$
Revised interpretation

\[E(k, t) = \xi \phi(k \xi) \]

with integral scale \(\xi \)

\[\xi = \xi(t) \propto t^q \]

and \(q \) determined by physics

\[\beta = -3 + 2/q \]

from dimensional arguments

\[\beta \quad p \quad q \quad \text{physics} \]

\begin{array}{llll}
4 & 10/7 & 2/7 & \int u^2 r^4 \, dr = \mathcal{L} = \text{const} \sim \ell^7 \tau^{-2} \quad \text{(Loitsiankii)} \\
3 & 8/6 & 2/6 & \\
2 & 6/5 & 2/5 & \int u^2 r \, dr = \mathcal{C} = \text{const} \sim \ell^5 \tau^{-2} \quad \text{(Saffman)} \\
1 & 4/4 & 2/4 & \langle A_{2D}^2 \rangle = \text{const} \sim \ell^4 \tau^{-2} \quad \text{(to be confirmed)} \\
0 & 2/3 & 2/3 & \langle A \cdot B \rangle = \text{const} \sim \ell^3 \tau^{-2} \quad \text{(Biskamp & Müller)}
\end{array}
Scaling relations

FIG. 1: Kinetic energy spectra in a hydrodynamic simulation (a), compared with magnetic (solid) and kinetic (dashed) energy spectra in a hydromagnetic simulation without helicity (b) and (c), and with (d). Panels (e)–(h) show the corresponding collapsed spectra obtained by using $\beta_M = 3$ (e), $\beta_M = 2$ (f), $\beta = 1$ (g), and $\beta = 0$ (h). In (f) we used $\beta_K = 1 \neq \beta_M$.
Conclusions

• Helicity slows down decay
• Large scale energy increases
• Nonhelical inverse transfer
• Revised interpretation to Olesen
• Self-similar spectra
• Confirmed now by others (Berera & Linkmann 2015 Zrake 2015)