Infrared spectroscopy of vertical heterostructures of graphene and hexagonal boron nitride

David Abergel and Marcin Mucha-Kruczyński

March 15th, 2016
1.8% lattice mismatch
Possible angular misalignment
Moiré pattern forms

Properties of \textit{vertical heterostructures} depend entirely on the nature of inter-layer interactions
These are difficult to predict in theory

\begin{align*}
u_0 &= -0.15, \ u_1 = 0, \ u_3 = 0 \\
u_0 &= 0, \ u_1 = 0.075, \ u_3 = 0.075
\end{align*}

Optical spectroscopy can reveal details about inter-layer interactions

- 1.8% lattice mismatch
- Possible angular misalignment
- Moiré pattern forms

Properties of vertical heterostructures depend entirely on the nature of inter-layer interactions
These are difficult to predict in theory

Interpretation of the interaction

\[
V = (u_0^+ f_+ + u_0^- f_-) + \tau_z \sigma_z (u_3^+ f_- + u_3^- f_+) \\
+ \tau_z \sigma \cdot [l_z \times \nabla (u_1^+ f_- + u_1^- f_+)] + \Delta \tau_z \sigma_z.
\]

\[
f_+ = \sum_n e^{i b_n \cdot r}, \quad f_- = i \sum_n (-1)^n e^{i b_n \cdot r}
\]

<table>
<thead>
<tr>
<th>Physical interpretation</th>
<th>Inversion symmetric</th>
<th>Inversion antisymmetric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential modulation</td>
<td>u_0^+</td>
<td>u_0^-</td>
</tr>
<tr>
<td>Modulation of hopping</td>
<td>u_1^+</td>
<td>u_1^-</td>
</tr>
<tr>
<td>Local sublattice asymmetry</td>
<td>u_3^+</td>
<td>u_3^-</td>
</tr>
<tr>
<td>Global sublattice asymmetry</td>
<td>Δ</td>
<td></td>
</tr>
</tbody>
</table>

Predictions exist in the literature
Effect of individual terms

- For strong u_0, double peak structure from mBZ edge reconstruction.
- For strong u_1, dip–peak–peak.
- For strong u_3, peak–dip–peak.

Comparison to existing theory

Model 1 | Point charge lattice | [1]
Model 4 | DFT + elastic theory | [2]

Summary

- **Infra-red spectroscopy** a key tool for understanding van der Waals interactions in 2D heterostructures.

- Clearest diagnostics found by **sweeping density** through first miniband

@David_Abergel