First-order topological quantum phase transitions

With Vladimir Juričić and Sasha Balatsky

Topological materials

Quantum Hall effect:

\[\mathbb{Z}_2 \] topological insulators:

\[\nu \in \{1, 0, 0\} \]

[Image of Bi\(_2\)Se\(_3\) band structure]

\[E_{B}(eV) \]

\[k_x (\text{Å}^{-1}) \]

\[k_y (\text{Å}^{-1}) \]

M. Z. Hasan et al., Rev. Mod. Phys. 82, 3045 (2010).

Topological crystalline insulators:

Quantum spin-Hall effect:

[Image of band structure]

M. Z. Hasan et al., Rev. Mod. Phys. 82, 3045 (2010).
The canonical understanding:
The canonical understanding:

- Topological phase transition can only occur when accompanied by a closing of the gap.
The canonical understanding:

- Topological phase transition can only occur when accompanied by a closing of the gap.
The canonical understanding:

- Topological phase transition can only occur when accompanied by a closing of the gap.
- Second-order phase transition
Contradicting experiments?

ARPES data on topological crystalline insulators.

Lead-doped tin selenide:

![Graph](image)

Contradicting experiments?

ARPES data on topological crystalline insulators.

Lead-doped tin selenide:

Tin-doped lead telluride:

B. A. Assaf et al., NPJ Quantum Materials 2, 26 (2017).
Contradicting experiments?

ARPES data on topological crystalline insulators.

First-order phase transition

Lead-doped tin selenide:

Tin-doped lead telluride:

Bernevig-Hughes-Zhang (BHZ) model:

\[H(k) = v_F \Gamma \cdot k + (M - Bk^2) \Gamma_0 \]

with spectrum:

\[\epsilon(k) = \sqrt{M^2 + (1 - 2MB)k^2 + B^2k^4} \]

- **B** is the band curvature (linked to doping).
- **M** is the band gap.
- \(\text{signum}(MB) > 0 \Rightarrow \text{topological phase.} \)
Thermodynamic analysis of BHZ model

- Bernevig-Hughes-Zhang (BHZ) model:
 \[H(k) = v_F \Gamma \cdot k + (M - Bk^2) \Gamma_0 \]
 with spectrum:
 \[\epsilon(k) = \sqrt{M^2 + (1 - 2MB)k^2 + B^2k^4} \]

- Compute the free energy at zero temperature:
 \[F_0 = \int \frac{d^3k}{(2\pi)^3} \epsilon(k) \]

- \(B \) is the band curvature (linked to doping).
- \(M \) is the band gap.
- \(\text{signum}(MB) > 0 \Rightarrow \) topological phase.
Thermodynamic analysis of BHZ model

- Bernevig-Hughes-Zhang (BHZ) model:

 \[H(\mathbf{k}) = v_F \mathbf{\Gamma} \cdot \mathbf{k} + \left(M - Bk^2 \right) \Gamma_0 \]

 with spectrum:

 \[\epsilon(\mathbf{k}) = \sqrt{M^2 + (1 - 2MB)k^2 + B^2k^4} \]

- Compute the free energy at zero temperature:

 \[F_0 = \int \frac{d^3k}{(2\pi)^3} \epsilon(k) \]

- \(B \) is the band curvature (linked to doping).
- \(M \) is the band gap.

 \[\rightarrow \text{Treat as variational parameter.} \]

- \(\text{signum}(MB) > 0 \Rightarrow \text{topological phase.} \)
Thermodynamic analysis of BHZ model

- Bernevig-Hughes-Zhang (BHZ) model:

\[H(\mathbf{k}) = v_F \mathbf{\Gamma} \cdot \mathbf{k} + \left(M - Bk^2 \right) \mathbf{\Gamma}_0 \]

with spectrum:

\[\epsilon(\mathbf{k}) = \sqrt{M^2 + (1 - 2MB)k^2 + B^2k^4} \]

- Compute the free energy at zero temperature:

\[F_0 = \int \frac{d^3k}{(2\pi)^3} \epsilon(k) \]

- Critical \(B \approx 0.23 \) where first-order phase transition occurs

- \(B \) is the band curvature (linked to doping).
- \(M \) is the band gap.
 \(\rightarrow \) Treat as variational parameter.
- \(\text{signum}(MB) > 0 \Rightarrow \) topological phase.

What is a TPT in these materials?

Topological phase transition \Rightarrow rearrangement of electron wave function.

Size of red dot is fraction of electron charge on Te atom.

Interlude: 2D vs 3D materials

Does this also work for 2D TIs?

Full expression for F_0 in 3D is:

$$F_0(M, B) = \sum_n \frac{M^4}{D_n} [A_n(MB) + C_n(MB) \log M^2]$$

- In 2D, the log term does not appear,
- This means only one minimum,
- Which moves smoothly through $M = 0$
- \Rightarrow Second-order phase transition.
Finite temperature phase diagram

Include entropic contribution at finite temperature:

\[F = F_0 + F_S = \int \frac{d^3k}{(2\pi)^3} \epsilon(k) + \int \frac{d^3k}{(2\pi)^3} \log \left(1 + e^{-\epsilon(k)/T} \right) \]

- \(B \) can vary with \(T \):
 \[B = B_0 - B_1 T. \]
- \(B_0 \) is doping contribution,
- \(B_1 \) is thermal expansion coefficient.

\[B(T) < 0 \]

Increasing doping \((x) \) \(\Rightarrow \) increasing \(B_0 \).

Experimental interpretation

Experimental interpretation

Re-entrant behaviour at (very?) high T?

- First-order topological phase transitions are possible.
- Qualitative agreement with experiments.

Reference:

✉️ david.abergel@nordita.org
🐦 @David_Abergel