Energy correlations at conformal collider

Gregory Korchemsky
IPhT, Saclay

In collaboration with
Andrei Belitsky, Stefan Hohenegger, Emeri Sokatchev, Alexander Zhiboedov

“Holographic QCD”, July 22, 2019
Energy flow correlations in QCD

Conformal collider for $\mathcal{N} = 4$ SYM

Why conventional approach is not efficient

Generalized optical theorem

Energy flow correlations in $\mathcal{N} = 4$ SYM

From $\mathcal{N} = 4$ SYM to QCD
$e^+e^- \text{ annihilation in QCD}$

- PETRA (1978-1986) and LEP (1989-2010)

- A virtual photon or Z^0—boson decay into quarks and gluons that undergo a hadronization process into hadrons

- Final states can be described using the class of *infrared finite* observables (event shapes):
 - energy-energy correlations (EEC), thrust, heavy mass, . . .

- Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy
Energy-energy correlation

✓ Function of the angle $0 \leq \chi \leq \pi$ between detected particles

 [Basham,Brown,Ellis,Love’78]

\[
EEC(\chi) = \sum_{a,b} \int d\sigma_{a+b+X} \frac{E_a E_b}{Q^2} \delta(\cos \theta_{ab} - \cos \chi)
\]

Total energy $\sum_a E_a = Q$

✓ One of the best studied event shapes

✓ The final states are dominated by two-jet events

✓ Current status (1978 – today):

 × Very precise experimental data

 × Slow progress on the theory side

\[
EEC(\chi) = a_s(Q) A(\chi) + a_s^2(Q) B(\chi) + O(a_s^3)
\]

Basham et al 1978 Dixon et al 2018

✓ Final goal: develop more efficient method to computing EEC

DELPHI data

N_{jet} = 2

N_{jet} = 3

N_{jet} = 4

N_{jet} = 5

Sherpa1.2.1

Energy-energy correlation, EEC

MC/data
Conformal collider: $e^+ e^-$ annihilation in $\mathcal{N} = 4$ SYM

Use $\mathcal{N} = 4$ SYM for developing new approaches to computing physical observables in QCD

Introduce an analog of the QCD electromagnetic current: the stress-energy supermultiplet

$J = \left\{ O_{20}', \varepsilon^\mu J_{R, \mu}, \varepsilon^{\mu\nu} T_{\mu\nu} \right\}$

1/2-BPS operator $\quad R-$current \quad stress-energy tensor

The final state contains an arbitrary number of scalars (s), gauginos (q) and gauge fields (g)

$$\int d^4x \ e^{iQx} J(x)|0\rangle = |ss\rangle + |ssg\rangle + |sqq\rangle + \ldots$$

Energy-energy correlation in $\mathcal{N} = 4$ SYM

$$\text{EEC}(\chi) = \sum_{a,b=s,q,g} \int d\sigma_{a+b+X} \frac{E_a E_b}{Q^2} \delta(\cos \theta_{ab} - \cos \chi)$$
Conventional approach

✔ EEC as a weighted cross-section

\[
\text{EEC}(\chi) = \sum_{a, b, X} \int d\text{LIPS} |A_{a+b+X}|^2 \frac{E_a E_b}{Q^2} \delta(\cos \chi - \cos \theta_{ab})
\]

The amplitude of creation of the final state \(|a, b, X = \text{everything}\rangle\)

\[
A_{a+b+X} = \int d^4x e^{iQx} \langle a, b, X | J(x) | 0 \rangle
\]

✔ New approach: EEC can be computed from \textit{correlation functions of energy flow operators}

✗ presence of infrared divergences in transition amplitudes \(A_{a+b+X}\)

✗ integration over the Lorentz invariant phase space of the final states \(d\text{LIPS}\)

✗ necessity for summation over all final states \(\sum_X\)

✗ no analytical results beyond one loop

Main disadvantages:
EEC from correlation functions

☑ Total cross section from the optical theorem

\[\sigma_{\text{tot}}(q) = \sum_X (2\pi)^4 \delta^{(4)}(Q - p_X) |\mathcal{A}_{J \rightarrow X}|^2 \]

\[= \int d^4 x \ e^{iQx} \sum_X \langle 0|J^\dagger (0)|X\rangle \ e^{-i p_X X} \langle X|J(0)|0\rangle \]

\[= \int d^4 x \ e^{iQx} \langle 0|J^\dagger (x)J(0)|0\rangle = \frac{1}{16\pi} (N^2 - 1) \theta(Q^0) \theta(Q^2) \]

☑ Generalization to EEC

\[\text{EEC} \sim \sum_X \langle 0|J^\dagger (x)|X\rangle \ w(X) \langle X|J(0)|0\rangle = \langle 0|J^\dagger (x) \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) J(0)|0\rangle \]

☑ Energy flow operator

[Sveshnikov, Tkachov], [GK, Oderda, Sterman]

\[\mathcal{E}(\vec{n})|X\rangle = \sum_a E_a \delta^{(2)}(\Omega_{\vec{p}_a} - \Omega_{\vec{n}})|X\rangle \]

Relation to the energy-momentum tensor in $\mathcal{N} = 4$ SYM

\[\mathcal{E}(\vec{n}) = \int_0^\infty dt \ \lim_{r \rightarrow \infty} r^2 \ \vec{n}^i T_{0i}(t, r\vec{n}) \]
EEC from correlation functions II

✔ Energy flow correlations

\[\text{EEC}(\chi) = \int d^4x \, e^{iQx} \langle 0 | J^\dagger(x) \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) J(0) | 0 \rangle \]

Energy flow in the direction of \(\vec{n}_1 \) and \(\vec{n}_2 \) with the relative angle \(\chi \)

✔ Multi-fold integral of Wightman 4pt function

\[\text{EEC} \sim \int d^4x \, e^{iQx} \int_0^\infty dt_1 dt_2 \lim_{r_i \to \infty} r_1^2 r_2^2 \langle 0 | J^\dagger(x) T_0(\vec{n}_1(x_1)) T_0(\vec{n}_2(x_2)) J(0) | 0 \rangle \]

\[x_i = (t, r \vec{n}_i) \]

✗ Compute corr. function \(\langle J^\dagger(x) T(x_1) T(x_2) J(0) \rangle \) in Euclid

✗ Continue to Minkowski with Wightman prescription

✗ Take detector limit + perform Fourier

Holographic QCD - p. 8/18
Correlation functions in $\mathcal{N} = 4$ SYM

- Correlation functions of $J = \{O_{20}', J_{R,\mu}, T_{\mu\nu}\}$ in the stress-energy multiplet are determined by the same scalar function

\[
\langle O(x_1)O(x_2)O(x_3)O(x_4) \rangle_E = \frac{1}{x_{12}^2 x_{23}^2 x_{34}^2 x_{41}^2} \Phi(u, v; a)
\]

\[
\langle J(x_1)T(x_2)T(x_3)J(x_4) \rangle_E = \frac{1}{(x_{12}^2 x_{23}^2 x_{34}^2)^2} P(\partial_u, \partial_v) \Phi(u, v; a)
\]

Cross-ratios

\[
u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \quad v = \frac{x_{23}^2 x_{41}^2}{x_{13}^2 x_{24}^2}
\]

- Universal function at weak coupling $a = g^2_{YM} N_c/(4\pi^2)$

\[
\Phi(u, v) = a \Phi^{(1)}(u, v) + a^2 \left(\frac{1}{2} (1 + u + v) \left[\Phi^{(1)}(u, v) \right]^2 + 2 \left[\Phi^{(2)}(u, v) + \frac{1}{u} \Phi^{(2)}(v/u, 1/u) + \frac{1}{v} \Phi^{(2)}(1/v, u/v) \right] \right) + O(a^3)
\]

$\Phi^{(1)}(u, v)$ 'box' integral, $\Phi^{(2)}(u, v)$ 'double' box integral

- AdS/CFT correspondence predicts $\Phi(u, v)$ at strong coupling
All-loop prediction for EEC

Master formula

\[
\text{EEC}(\chi) = \frac{1}{4z^2(1-z)} \int_{-\delta - i\infty}^{-\delta + i\infty} \frac{d j_1 d j_2}{(2\pi i)^2} \frac{M(j_1, j_2; a) K(j_1, j_2)}{(1-z)^{j_1+j_2}}
\]

- The dependence on the angle \(\chi \) enters through

\[
z = (1 - \cos \chi)/2, \quad 0 < z < 1
\]

- Detector function is independent on the coupling

\[
K(j_1, j_2) = \frac{2 \Gamma(1 - j_1 - j_2)}{\Gamma(j_1 + j_2)\Gamma(1 - j_1)\Gamma(1 - j_2)^2}
\]

- The dependence on the coupling constant resides in the Mellin amplitude

\[
\Phi(u, v; a) = \int_{-\delta - i\infty}^{-\delta + i\infty} \frac{d j_1 d j_2}{(2\pi i)^2} M(j_1, j_2; a) u^{j_1} v^{j_2}
\]

- The Mellin amplitude \(M(j_1, j_2; a) \) is known in \(\mathcal{N} = 4 \) SYM at weak and at strong coupling
EEC at weak coupling

$$\text{EEC}_{\mathcal{N}=4} = \frac{1}{4z^2(1-z)} \left\{ a F_1(z) + a^2 F_2(z) + a^3 F_3(z) + O(a^4) \right\}, \quad z = \frac{1}{2}(1 - \cos \chi)$$

- **Leading order** \(F_1(z) = -\ln(1 - z) \)

- **Next-to-leading order**

$$F_2(z) = (1-z)(4\sqrt{z} \left[\text{Li}_2\left(-\sqrt{z}\right) - \text{Li}_2\left(\sqrt{z}\right) + \frac{1}{2} \ln z \ln\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right] + (1+z)\left[2\text{Li}_2(z) + \ln^2(1-z)\right] + 2 \ln(1-z) \ln\left(\frac{z}{1-z}\right) + \frac{2}{3} \pi^2)$$

$$+ (1-z)(1+2z) \left[\ln^2\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \ln\left(\frac{1-z}{z}\right) - 8\text{Li}_3\left(\frac{\sqrt{z}}{\sqrt{z}+1}\right) - 8\text{Li}_3\left(\frac{\sqrt{z}}{\sqrt{z}-1}\right) \right] - 4(z-4)\text{Li}_3(z) + 6(3+3z-4z^2)\text{Li}_3\left(\frac{z}{z-1}\right)$$

$$- 2z(1+4z)\zeta_3 + 2\left[(3-4z)z \ln z + 2(2z^2 - z - 2) \ln(1-z) \right] \text{Li}_2(z) + \frac{1}{3} \ln^2(1-z) \left[4(3z^2 - 2z - 1) \ln(1-z) + 3(3-4z)z \ln z \right]$$

$$+ \frac{\pi^2}{3} \left[2z^2 \ln z - (2z^2 + z - 2) \ln(1-z) \right]$$

- **Next-to-next-to-leading order**

$$F_3(z) = \text{a sum of harmonic polylogarithms + a two-fold elliptic integral}$$

- **Large logarithmically enhanced corrections for** \(z \to 0 \) (small angle) and \(z \to 1 \) (back-to-back region)

[Belitsky, Hohenegger, GK, Sokatchev, Zhiboedov'2013]

[Henn, Sokatchev, Yan, Zhiboedov'2019]
From weak to strong coupling

- At weak coupling $\text{EEC}_{\mathcal{N}=4}$ has a shape which is remarkably similar to the one in QCD
- Going from one to two loops, EEC flattens
- This agrees with strong coupling prediction for EEC in planar $\mathcal{N} = 4$ SYM

$$\text{EEC}_{\mathcal{N}=4} \xrightarrow{a \to \infty} \frac{1}{2} \left[1 + a^{-1} (1 - 6z(1 - z)) + O(a^{-3/2}) \right]$$

No jets at strong coupling!

What is a manifestation of integrability of $\mathcal{N} = 4$ SYM?
End-point asymptotics

✔ Small angle correlations $\chi \to 0$ (or $z \sim \chi^2 \to 0$): calorimeters measure nearly collinear particles

\[
\text{EEC } z \xrightarrow{\to} 0 \quad \frac{a}{4z} \left[1 + a \left(\ln z - \frac{1}{2} \zeta_3 + \zeta_2 - 3 \right) \right]
\]

✗ Resummation of leading log's $a (a \ln z)^k$ using the “jet calculus” [Konishi, Ukawa, Veneziano]

\[
\text{EEC } z \xrightarrow{\to} 0 \quad \frac{a}{4z} \int_0^1 dx \: x^2 \left\{ \text{ fragmentation function } D(x, Q^2 z) \right\} = \frac{a}{4} z^{-1 + \gamma(3)/2}
\]

$\gamma(3) = 2a + O(a^2)$ – twist-2 anom. dimension of spin $S = 3$

✔ EEC in the back-to-back kinematics $\chi \to \pi$ (or $y \equiv 1 - z \sim (\pi - \chi)^2 \to 0$)

\[
\text{EEC } z \xrightarrow{\to} 1 \quad \frac{1}{4y} \left\{ a \ln(1/y) - \frac{a^2}{2} \left[\ln^3(1/y) + \frac{\pi^2}{2} \ln(1/y) \right] \right\}
\]

✗ Large (Sudakov) corrections $a^k (\ln y)^n$ come from the emission of soft and collinear particles

✗ Can be resummed to all orders in the coupling [Collins, Soper]
Back-to-back region

Unitary diagram describing a two-jet cross-section

\[
\text{EEC} \sim \langle J^{\mu_1}(x_1)T_{\mu_2\nu_2}(x_2)T_{\mu_3\nu_3}(x_3)J^{\mu_4}(x_4) \rangle
\]

The ‘source operators’ are at the points \(x_1, x_4\), the ‘calorimeter operators’ are at \(x_2, x_3\)

The four operators are light-like separated \(x_{12}^2, x_{13}^2, x_{24}^2, x_{34}^2 \to 0\)

EEC in the back-to-back region = Light-like limit of the correlation function

\[
\langle O(x_1)O(x_2)O(x_3)O(x_4) \rangle = \frac{1}{x_{12}^2 x_{23}^2 x_{34}^2 x_{41}^2} \Phi(u, v; a)
\]

Cross-ratios \(u, v \to 0\)

\(\Phi(u, v; a)\) receives large double-log corrections \((a \ln u \ln v)^{\ell}\)
Light-like limit of the correlation function

OPE expansion \((x_i - x_{i+1})^2 \to 0\)

\[
O(x_i)O(x_{i+1}) \sim \sum_{\Delta,S} \frac{C_S}{(x_{i,i+1}^2)^{(\Delta-S)/2}} O_S(x_i)
\]

The leading contribution in all channels comes from the twist-2 operators with large spin \(S \gg 1\)

\[
\Delta - S = 2 + \gamma_S(a), \quad \gamma_S = 2\Gamma_{\text{cusp}}(a) \ln S + \Gamma(a)
\]

\[
C_S(a) = H(a) e^{-\Gamma(a) \ln S} 2^{-\gamma_S(a)} \Gamma^2 \left(1 - \frac{1}{2} \gamma_S(a) \right)
\]

\(\Gamma_{\text{cusp}}(a)\) and \(\Gamma(a)\) are known for any coupling from integrability; \(H(a)\) is known at three loops

\[
\Phi(u, v) \sim \sum_{S \gg 1} C_S u^{\gamma_S/2} g_S(v) \text{ conformal block}
\]

Leading asymptotics of the correlation function for \(u, v \to 0\) \cite{Alday, Eden, GK, Maldacena, Sokatchev} \cite{Alday, Bissi}

\[
\Phi(u, v) = H(a) \int_0^\infty \frac{dy_1}{y_1} \int_0^\infty \frac{dy_2}{y_2} e^{-\frac{1}{2} \Gamma_{\text{cusp}}(a) \ln(u/y_1) \ln(v/y_2) + \frac{1}{2} \Gamma(a) \ln(uv/(y_1 y_2))} f(y_1) f(y_2)
\]

The function \(f(y) = 2y K_0(2\sqrt{y})\) describes the large spin limit of the conformal block

Holographic QCD - p. 15/18
EEC in the back-to-back region

Prediction for the EEC in the back-to-back region \(\delta = (\pi - \chi)^2 \to 0 \)

\[
\text{EEC}(\chi) = \frac{H(a)}{8\delta} \int_0^\infty dy J_0(\sqrt{y}) \exp \left[-\frac{1}{2} \Gamma_{\text{cusp}}(a) \ln^2(y/\delta) - \Gamma(a) \ln(y/\delta) \right]
\]

Weak-coupling expansion (with \(L = \ln(1/\delta) \gg 1 \))

\[
\text{EEC} = \frac{1}{4\delta} \left\{ aL + a^2 \left(-\frac{L^3}{2} - \frac{\pi^2 L}{4} + \frac{\zeta_3}{2} \right) + a^3 \left(\frac{L^5}{8} + \frac{\pi^2 L^3}{6} - \frac{11\zeta_3 L^2}{4} + \frac{61\pi^4 L}{720} - \frac{\pi^2 \zeta_3}{3} - \frac{7\zeta_5}{2} \right) \right.
\]
\[
+ a^4 \left[-\frac{L^7}{48} - \frac{5\pi^2 L^5}{96} + \frac{95\zeta_3 L^4}{48} - \frac{29\pi^4 L^3}{480} + \left(\frac{67\pi^2 \zeta_3}{48} + \frac{69\zeta_5}{4} \right) L^2 \right.
\]
\[
\left. - \left(\frac{97\zeta_3^2}{8} + \frac{367\pi^6}{12096} \right) L + \frac{187\pi^4 \zeta_3}{1440} + \frac{95\pi^2 \zeta_5}{48} + \frac{785\zeta_7}{32} \right] + O(a^5) \}
\]

Homogenous weight property: \(w(L) = 1, w(\pi) = 1, w(\zeta_n) = n \quad \Rightarrow \quad w(\text{EEC}|_{\alpha^\ell}) = 2\ell + 1 \)

Relation to QCD

\[
\text{EEC}_{\text{QCD}}(\chi \to \pi) = \text{EEC}_{\mathcal{N}=4}(\chi \to \pi) + \text{lower weight terms}
\]

\(\mathcal{N} = 4 \) captures the most complicated part of the QCD result
EEC at small angles

Correlation between the particles within the same jet

\[
\text{EEC} \sim \langle J_{\mu_1}(x_1) T_{\mu_2\nu_2}(x_2) T_{\mu_3\nu_3}(x_3) J_{\mu_4}(x_4) \rangle
\]

Small angle limit \((x_2 - x_3)^2 \to 0:\)

\[
u' = \frac{x_{23}^2 x_{14}^2}{x_{13}^2 x_{24}^2} = 1/v \to 0, \quad v' = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} = u/v \to 1
\]

The leading contribution comes from the twist-six operator

\[
\Phi(u, v) = \sum_{S=0,2,4,...} C_{S+2}(a)(u')^{3+\gamma_{S+2}(a)/2} g_S(v') + \ldots
\]

EEC at small angle \(z = \chi^2/4 \to 0\)

\[
\text{EEC} = z^{-1+\gamma_1(a)/2} \frac{C_1(a) \Gamma(3 + \gamma_1(a))}{4\Gamma^3(2 + \gamma_1(a)/2) \Gamma(-1 - \gamma_1(a)/2)}
\]

Depends on the twist-2 conformal data \(C_S\) and \(\gamma_S\) for small spin \(S = 1\)

\[
\text{EEC}_{QCD}(\chi \to 0) = \text{EEC}_{N=4}(\chi \to 0) + \text{lower weight terms}
\]
Conclusions and open questions

✔️ Energy correlations are good/nontrivial physical observables in $\mathcal{N} = 4$ SYM

✔️ Relation to energy-energy correlations in QCD (most complicated part)?

✔️ Interpolation between weak and strong coupling? what is the manifestation of integrability?

✔️ Other proposals for ‘good’ observables?