Axion holographic RG flows and the dynamics of topological densities

Francesco Nitti

APC, U. Paris Diderot

Holographic QCD, Nordita, 22-07-2019

Work with Y. Hamada, Elias Kiritsis, Lukas Witkowski

Work in progress with E. Kiritsis
Topological charge at large-N

\[\mathcal{L}_{YM} = \frac{1}{4g^2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{16\pi^2} \text{Tr} F_{\mu\nu} \tilde{F}^{\mu\nu}, \quad \tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \]
Topological charge at large-N

\[\mathcal{L}_{YM} = N \left[\frac{1}{4\lambda} Tr F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{16\pi^2 N} Tr F_{\mu\nu} \tilde{F}^{\mu\nu} \right], \quad \tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \]

Large-N limit: keep $\lambda \equiv g^2 N$ finite.

\[\mathcal{L}_{YM} = NL[\lambda, \theta/N] \]
Topological charge at large-N

\[
\mathcal{L}_{YM} = N \left[\frac{1}{4\lambda} Tr F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{16\pi^2 N} Tr F_{\mu\nu} \tilde{F}^{\mu\nu} \right], \quad \tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}
\]

Large-N limit: keep $\lambda \equiv g^2 N$ finite.

\[
\mathcal{L}_{YM} = NL[\lambda, \theta/N]
\]

- Quantities obtained from $L[\lambda, \theta/N]$ have good large-N limit
- $\theta \in [0, 2\pi] \Rightarrow$ the contribution of the topological term to glue dynamics is suppressed at large N. E.g. for small θ (Witten):

\[
\mathcal{E}(\lambda, \theta) \approx N^2 \mathcal{E}(\lambda, 0) + \frac{1}{2} \chi \theta^2, \quad \chi = \mathcal{E}''(\lambda, 0)
\]
Holographic Setup

Bottom-up 5-dimensional model with Axion

\[S = M_p^3 \int d^4x dr \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + Y(\phi) \frac{(\partial a)^2}{2} \right] \]

- \(\phi \Leftrightarrow \) relevant operator \(O \) of UV-dimension \(\Delta \)
- IHQCD: \(\lambda = e^\phi = \) (running) ’t Hooft coupling \(\Leftrightarrow Tr F^2(x) \)
Holographic Setup

Bottom-up 5-dimensional model with Axion

\[S = M_p^3 \int d^4x dr \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + Y(\phi) \frac{(\partial a)^2}{2} \right] \]

- \(\phi \Leftrightarrow \) relevant operator \(O \) of UV-dimension \(\Delta \)
- IHQCD: \(\lambda = e^\phi = \) (running) ’t Hooft coupling \(\Leftrightarrow Tr F^2(x) \)

\[a(x, r) \Leftrightarrow q(x) = \frac{1}{16\pi^2} Tr F \tilde{F}(x) \]
Holographic Setup

Bottom-up 5-dimensional model with Axion

\[S = M_p^3 \int d^4x dr \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + Y(\phi) \frac{(\partial a)^2}{2} \right] \]

- \(\phi \Leftrightarrow \) relevant operator \(O \) of UV-dimension \(\Delta \)
- IHQCD: \(\lambda = e^\phi = \) (running) ’t Hooft coupling \(\Leftrightarrow Tr F^2(x) \)
- \(a(x, r) \Leftrightarrow q(x) = \frac{1}{16\pi^2} Tr F \tilde{F}(x) \)

- Exact shift symmetry in the large-\(N \) limit \(\Rightarrow \) No potential for \(a \).
- \(V(\lambda), Y(\lambda) \) to be fixed phenomenologically.
Outline

- **PART I**
 Axionic RG flow solutions in bottom-up HQCD
 1905.03663 Y. Hamada, E. Kiritsis, FN, L. Witkowski

- **PART II**
 Role of contact terms in holographic correlators
 FN, E. Kiritsis, in progress
PART I

Axion RG flows

- Bulk evolution of $a(r)$ may be understood as non-perturbative running of θ.
- Study at exact holographic RG-flow solutions of Einstein-Axion-Dilaton (exception to standard multi-field superpotential formalims)
- Potentially interesting for pheno (relaxion, strong CP).

1905.03663 Y. Hamada, Elias Kiritsis, FN, Lukas Witkowski
Axionic domain-wall solutions

\[ds^2 = du^2 + e^{2A(u)} dx^\mu dx_\mu, \quad \phi = \phi(u) \equiv \log \lambda, \quad a = a(u) \]

- UV: Asymptotically AdS$_5$ as \(u \to -\infty \): \(A(u) \sim -u/\ell \)

\[\phi \sim \begin{cases}
\phi_- e^{\Delta_- u} & \Delta = d - \Delta_- \\
- \log(-b_0 u) & \text{IHQCD}
\end{cases} \quad a(r) \to a_{uv} + Q e^{4u} \]
Axionic domain-wall solutions

\[ds^2 = du^2 + e^{2A(u)} dx^\mu dx_\mu, \quad \phi = \phi(u) \equiv \log \lambda, \quad a = a(u) \]

- UV: Asymptotically AdS_5 as $u \to -\infty$: $A(u) \sim -u/\ell$

$\phi \sim \begin{cases}
\phi e^{\Delta - u} & \Delta = d - \Delta_- \\
- \log(-b_0 u) & \text{IHQCD}
\end{cases} \quad a(r) \rightarrow a_{uv} + Q e^{4u}$

- source term: $a_{uv} = \theta/N$
- vev term: $Q \propto \langle q \rangle$
Axionic domain-wall solutions

\[ds^2 = du^2 + e^{2A(u)} dx^\mu dx_\mu, \quad \phi = \phi(u) \equiv \log \lambda, \quad a = a(u) \]

- UV: Asymptotically \(AdS_5 \) as \(u \to -\infty \): \(A(u) \sim -u/\ell \)

\[\phi \sim \begin{cases} \phi_- e^{\Delta_- u} & \Delta = d - \Delta_- \\ - \log(-b_0 u) & \text{IHQCD} \end{cases} \quad a(r) \to a_{uv} + Q e^{4u} \]

- IR: \(e^A \to 0 \). IR Axion regularity requirement

\[a(u_{ir}) = 0 \]

- Analogy to top-down models where \(a \) comes from a form;
- Required by holographic consistency.
Axion RG flow

\[\partial_u (Y e^{dA} \dot{a}) = 0 \]

\[\dot{a} = \frac{Q}{Ye^{3A}} \quad \rightarrow \quad a = a_{uv} + Q \int_{u_{uv}}^{u} \frac{du}{Ye^{3A}} \]
Axion RG flow

$$\partial_u (Y e^{dA} \dot{a}) = 0$$

$$\dot{a} = \frac{Q}{Ye^{3A}} \to a = a_{uv} + Q \int_{u_{uv}}^u \frac{du}{Ye^{3A}}$$

$$a(u_{ir}) = 0 \to a_{uv} = -Q \int_{u_{uv}}^{u_{ir}} \frac{du}{Ye^{3A}}$$
Axion RG flow

\[\partial_u (Y e^{dA} \dot{a}) = 0 \]

\[\dot{a} = \frac{Q}{Ye^{3A}} \quad \rightarrow \quad a = a_{uv} + Q \int_{u_{uv}}^{u} \frac{du}{Ye^{3A}} \]

\[a(u_{ir}) = 0 \quad \Rightarrow \quad a_{uv} = -Q \int_{u_{uv}}^{u_{ir}} \frac{du}{Ye^{3A}} \]

Substitute \(\dot{a} \) in the field equations \(\Rightarrow \) all is controlled by \(Q \)

- \(Y(\phi) \) must diverge faster than \(e^{3A} \rightarrow 0 \) in the IR. Otherwise only trivial axion solution with \(Q = 0 \) makes sense

- Theories with IR AdS fixed point at finite \(\phi = \phi_{ir} \) generically only have trivial axion solutions, \(a = 0 \)

From now on assume IR is at \(\phi \rightarrow \infty \) (good singularity).
Periodicity

The boundary field theory θ parameter is periodic but the bulk axion may not be

$$a_{uv} = \frac{\theta + 2k\pi}{N}$$

A given value $\theta \in [0, 2\pi]$ corresponds to many values for the axion source term a_{uv}

$$\downarrow$$

Multiple (infinite?) holographic RG-flow solutions for a given θ
Backreaction

Take model such that in the IR:

\[\phi \to +\infty, \quad V(\phi) \simeq -V_{\infty} e^{b\phi}, \quad Y(\phi) \simeq Y_{\infty} e^{\gamma \phi} \]

Two kinds of solutions:

1. \(a(u) \) gives subleading contribution in the IR \(\Rightarrow \) IR axion regularity only fixes \(Q \) in terms of \(a_{uv} \).

2. \(a(u) \) backreacts at leading order and the value of \(Q \) is completely fixed
Backreaction

Take model such that in the IR:

\[\phi \to +\infty, \quad V(\phi) \simeq -V_\infty e^{b\phi}, \quad Y(\phi) \simeq Y_\infty e^{\gamma\phi} \]

Two kinds of solutions:

1. \(a(u) \) gives subleading contribution in the IR \(\Rightarrow \) IR axion
 regularity only fixes \(Q \) in terms of \(a_{uv} \).

2. \(a(u) \) backreacts at leading order and the value of \(Q \) is
 completely fixed
 - Type-2 solutions not acceptable (we cannot fix the source to
 arbitrary value)
 - For type-1 solutions the backreaction is only important in the
 interior, but becomes negligible in both the UV and the IR.
Free energy

Free energy $\mathcal{F} = \text{Euclidean on-shell action } S_E$

$$S^{(\text{ren})}_{\text{on-shell}}[m, a_{uv}] = - M_p^3 V_d \left(e^{4A} \dot{A} - S_{ct} \right)_{uv} = - V_d (M_p \ell)^3 m^4 C(a_{uv})$$

$$m = (\phi_-)^{1/\Delta} \text{ or } \Lambda_{QCD} \quad C(a_{uv}) \propto \frac{1}{(M_p \ell)^3} \frac{\langle O_\phi \rangle}{m^\Delta}$$
Free energy

Free energy $\mathcal{F} =$ Euclidean on-shell action S_E

$$S^{(\text{ren})}_{\text{on-shell}}[m, a_{uv}] = -M_p^3 V_d \left(e^{4A} \dot{A} - S_{ct} \right)_{uv} = -V_d (M_p \ell)^3 m^4 C(a_{uv})$$

$$m = (\phi^-)^{1/\Delta} \quad \text{or} \quad \Lambda_{QCD} \quad \quad C(a_{uv}) \propto \frac{1}{(M_p \ell)^3} \frac{\langle O_\phi \rangle}{m^\Delta}$$

Multiple saddle points: \quad \quad a_{uv}^{(k)} = (\theta + 2\pi k)/N

$$\mathcal{F}_k = -V_d (M_p \ell)^3 m^4 C \left(\frac{\theta + 2\pi k}{N} \right) \quad \quad \mathcal{F}(\theta) = \min_k \mathcal{F}_k$$
Free energy

Free energy $\mathcal{F} = \text{Euclidean on-shell action } S_E$

$$S^{(\text{ren})}_{\text{on-shell}}[m, a_{uv}] = -M_p^3 V_d \left(e^{4A} \dot{A} - S_{ct} \right)_{uv} = -V_d (M_p \ell)^3 m^4 C(a_{uv})$$

$$m = (\phi_-)^{1/\Delta} \text{ or } \Lambda_{\text{QCD}} \quad C(a_{uv}) \propto \frac{1}{(M_p \ell)^3} \frac{\langle O_\phi \rangle}{m^\Delta}$$

Multiple saddle points: \[a_{uv}^{(k)} = (\theta + 2\pi k)/N \]

$$\mathcal{F}_k = -V_d (M_p \ell)^3 m^4 C \left(\frac{\theta + 2\pi k}{N} \right) \quad \mathcal{F}(\theta) = \text{Min}_k \mathcal{F}_k$$

Expand C to quadratic order (small axion)

$$\mathcal{F}(\theta) = \mathcal{F}(0) + \frac{V_d}{2} \chi \text{Min}_k (\theta + 2\pi k)^2 \quad \chi = \frac{(M_p \ell)^3}{N^2} \left(\int_{uv}^{ir} \frac{du}{Ze^{4A}} \right)^{-1}$$
Free energy

Free energy $\mathcal{F} = \text{Euclidean on-shell action } S_E$

$$S_{\text{on-shell}}^{(\text{ren})}[m, a_{uv}] = -M_p^3 V_d \left(e^{4A} \dot{A} - S_{ct} \right)_{uv} = -V_d (M_p \ell)^3 m^4 C(a_{uv})$$

$$m = (\phi_-)^{1/\Delta_-} \text{ or } \Lambda_{QCD} \quad C(a_{uv}) \propto \frac{1}{(M_p \ell)^3} \frac{\langle O_\phi \rangle}{m^\Delta}$$

Multiple saddle points: $a_{uv}^{(k)} = (\theta + 2\pi k)/N$

$$\mathcal{F}_k = -V_d (M_p \ell)^3 m^4 C \left(\frac{\theta + 2\pi k}{N} \right) \quad \mathcal{F}(\theta) = \text{Min}_k \mathcal{F}_k$$

Expand C to quadratic order (small axion)

$$\mathcal{F}(\theta) = \mathcal{F}(0) + \frac{V_d}{2} \chi \text{Min}_k (\theta + 2\pi k)^2$$

$$\chi = \frac{(M_p \ell)^3}{N^2} \left(\int_{uv}^{ir} \frac{du}{Ze^{4A}} \right)^{-1}$$
Example

Model with a UV fixed point at $\phi = 0$ deformed by relevant operator

$$V = -\frac{1}{\ell^2} \left[d(d-1) + \left(\frac{1}{2} (d - \Delta_-) \Delta_- - b^2 V_\infty \right) \phi^2 + 4V_\infty \sinh^2 \left(\frac{b\phi}{2} \right) \right], \quad Y = e^{\gamma\phi},$$
Example

Model with a UV fixed point at $\phi = 0$ deformed by relevant operator

$$V = -\frac{1}{\ell^2} \left[d(d-1) + \left(\frac{1}{2} (d-\Delta) \Delta - b^2 V_{\infty} \right) \phi^2 + 4V_{\infty} \sinh^2 \left(\frac{b\phi}{2} \right) \right], \quad Y = e^{\gamma \phi},$$

$$(W \equiv \dot{A}; \; D = \text{an IR parameter related to } Q)$$
Finite axion range

In the probe approximation, any value of a_{uv} is possible \Rightarrow An infinite number of vacua for every θ
Finite axion range

In the probe approximation, any value of a_{uv} is possible \Rightarrow An infinite number of vacua for every θ

$$a_0^{uv}, \ b=\frac{13}{10}, \ y=1$$

Backreaction \Rightarrow range of a becomes bounded
Finite axion range

Range of a bounded \Rightarrow finite number of vacua.

$$|a_{uv}| \leq \int_{uv}^{ir} \frac{1}{\sqrt{Y(\phi)}} \sim O(1)$$

\Rightarrow There are $O(N)$ vacua.
PART II

Role of contact terms in holographic correlators

- Connect the full topological charge correlator $\langle q(x)q(0) \rangle$ to the spectral data for axial glueballs (masses and decay constants)
- Compute reliably the position-space correlator: exercice in distributional Fourier transform
- Crucial: understand the role of contact terms

Work sparked by discussion with E. Kiritsis, U. Gursoy, I. Iatrakis A. Schaefer, S-W. Mages and others to match the topological correlator with lattice
Topological correlator

\[S_{QFT} = S_0 + N \int d^4x \, \alpha(x) q(x), \quad \alpha \equiv \frac{\theta}{N} \]

Wick rotation to Euclidean: \(q(x) \rightarrow iq(x) \)

\[Z[\alpha] = \int [dA] \, e^{-S_E + iN \int \alpha(x) q(x)} \]
Topological correlator

\[S_{QFT} = S_0 + N \int d^4x \, \alpha(x) q(x), \quad \alpha \equiv \frac{\theta}{N} \]

Wick rotation to Euclidean: \(q(x) \rightarrow iq(x) \)

\[Z[\alpha] = \int [dA] \, e^{-S_E + iN \int \alpha(x) q(x)} \]

Expand \(Z \) to quadratic order in \(\alpha \):

\[Z[\alpha] \simeq \exp \left[-\frac{N^2}{2} \int \alpha(x) G(x, y) \alpha(y) \right] \quad G(x, y) = \langle q(x) q(y) \rangle \]

Topological susceptibility: take \(\alpha = \theta/N = \text{const} \)

\[\mathcal{F}(\theta) - \mathcal{F}(0) = -\frac{1}{V} \log \frac{Z[\theta/N]}{Z[0]} = \frac{1}{2} \chi \theta^2 \quad \chi = \int d^4x \, G(x) \]
Topological correlator from holography

\[a(x, r) \Leftrightarrow Nq(x) \equiv \frac{N}{16\pi^2} Tr F \tilde{F}(x) \]

\[a(x, r) \simeq_{r \to 0} \alpha(x) + \ldots \Leftrightarrow S_{QFT} = S_0 + N \int d^4x \alpha(x)q(x), \quad \alpha \equiv \frac{\theta}{N} \]
Topological correlator from holography

\[a(x, r) \Leftrightarrow Nq(x) \equiv \frac{N}{16\pi^2} \text{Tr} F\tilde{F}(x) \]

\[a(x, r) \simeq_{r \to 0} \alpha(x) + \ldots \Leftrightarrow S_{QFT} = S_0 + N \int d^4x \alpha(x)q(x), \quad \alpha \equiv \frac{\theta}{N} \]

Wick rotation to Euclidean: \(q(x) \rightarrow iq(x) \)

\[Z[\alpha] = \int [dA] e^{-S_E + iN \int \alpha(x)q(x)} = \exp i\left\{ -S_E^{\text{grav}}[\alpha(x; r)] \right\}_{a(x,r) \rightarrow \alpha(x)} \]
Topological correlator from holography

\[a(x, r) \Leftrightarrow Nq(x) \equiv \frac{N}{16\pi^2} \text{Tr} F\tilde{F}(x) \]

\[a(x, r) \sim_{r\to 0} \alpha(x) + \ldots \Leftrightarrow S_{QFT} = S_0 + N \int d^4x \alpha(x)q(x), \quad \alpha \equiv \frac{\theta}{N} \]

Wick rotation to Euclidean: \(q(x) \to iq(x) \)

\[Z[\alpha] = \int [dA] e^{-S_E+iN \int \alpha(x)q(x)} = \exp i\left\{-S_E^{\text{grav}}[\alpha(x); r]\right\}_{a(x, r) \to \alpha(x)} \]

- Euclidean dictionary: \(a(x, r) \) dual to \(iNq(x) \).
- Reflection positivity for a pseudoscalar operator:

\[G(x) \equiv \langle q(x)q(0) \rangle < 0 \quad x \neq 0 \]
Topological correlator from holography

\[S_E[a] = M_p^3 \int d^4x \, dr \, \frac{Z(r)}{2} \left[(\partial_r a)^2 + \partial_{\mu} a \partial^{\mu} a \right], \]

\[Z(r) = e^{3A(r)} Y(\phi(r)) \quad (M_p \ell)^3 \sim N^2 \]
Topological correlator from holography

\[S_E[a] = M_p^3 \int d^4x \, dr \, \frac{Z(r)}{2} \left[(\partial_r a)^2 + \partial_\mu a \partial^\mu a \right], \]

\[Z(r) = e^{3A(r)} Y(\phi(r)) \quad (M_p \ell)^3 \sim N^2 \]

Axion fluctuations are probes on a background \((g_{\mu\nu}, \phi)\),

\[g_{\mu\nu} = e^A(r) \left[dr^2 + \eta_{\mu\nu} dx^\mu dx^\nu \right], \quad \lambda = \lambda(r) \]

\[\partial_r [Z(r) \partial_r a(x, r)] + Z(r) \partial_\mu \partial^\mu a(x, r) = 0 \]

\[S_E[a] = -M_p^3 \lim_{r \to 0} \left[\int d^4x \, \frac{Z(r)}{2} a(x, r) \partial_r a(x, r) \right] > 0 \]

\[= \frac{N^2}{2} \int d^4x d^4y \, \alpha(x) G(x, y) \alpha(y) \]
Two-point function from spectrum

Write two-point correlator in terms of exchange of axial glueballs

\[\langle q(x)q(y) \rangle = \sum \tilde{G}(k) = -\sum_{n=0}^{\infty} \frac{f_n^2}{(k^2 + m_n^2)} \]

Spectral data \((f_n, m_n)\) easily accessible from holography.
Two-point function from spectrum

Write two-point correlator in terms of exchange of axial glueballs

\[\langle q(x)q(y) \rangle = \sum \tilde{G}(k) = -\sum_{n=0}^{\infty} \frac{f_n^2}{k^2 + m_n^2} \]

Spectral data \((f_n, m_n)\) easily accessible from holography.

PROBLEM:

- \(G(x) < 0\) but \(\chi_{\text{top}} = \int d^4 x G(x) = \tilde{G}(k = 0)\) positive.
Two-point function from spectrum

Write two-point correlator in terms of exchange of axial glueballs

\[\langle q(x)q(y) \rangle = \sum \tilde{G}(k) = C_0 - \sum_{n=0}^{\infty} \left(\frac{f_n^2}{k^2 + m_n^2} \right) \]

Spectral data \((f_n, m_n)\) easily accessible from holography.

PROBLEM:

- \(G(x) < 0\) but \(\chi_{top} = \int d^4x G(x) = \tilde{G}(k = 0)\) positive.
 - Well known solution: there must be a contact term which gives a positive contribution at \(k = 0\).
Two-point function from spectrum

Write two-point correlator in terms of exchange of axial glueballs

\[\langle q(x)q(y) \rangle = \sum \mathbf{X} \]

\[\tilde{G}(k) = C_0 - \sum_{n=0}^{\infty} \frac{f_n^2}{(k^2 + m_n^2)} \]

Spectral data \((f_n, m_n)\) easily accessible from holography.

PROBLEM:

- \(G(x) < 0\) but \(\chi_{top} = \int d^4 x G(x) = \tilde{G}(k = 0)\) positive.
 Well known solution: there must be a contact term which gives a positive contribution at \(k = 0\).
Two-point function from spectrum

Two point correlator at finite separation can be understood in terms of exchange of axial glueballs

\[G(x) = C_0 \delta^{(4)}(x) - \Gamma[x] \]
Two-point function from spectrum

\[\tilde{G}(k) = C_0 - \sum_{n=0}^{\infty} \frac{f_n^2}{(k^2 + m_n^2)} \]

Spectral data \((f_n, m_n)\) easily accessible from holography.
Two-point function from spectrum

\[\tilde{G}(k) = C_0 - \sum_{n=0}^{\infty} \frac{f_n^2}{(k^2 + m_n^2)} \]

Spectral data \((f_n, m_n)\) easily accessible from holography.

PROBLEM:

- At any finite \(k\), the series diverges: on general grounds since \(G(k) \sim k^4 \log k^2\) in the UV: need \(m_n^2 \sim f_n \sim n\).

How do we relate the (finite) holographic correlator to the spectrum?
Axial Glueball Spectrum

- Go to momentum space (and back to Lorentzian signature):

\[a(x, r) = a_k(r)e^{ik\mu x^\mu} \Rightarrow a''_k + \frac{Z'}{Z}a'_k - k^2 a_k = 0, \quad k^2 = -E^2 + |\vec{k}|^2 \]

- Define: \(\psi(r) = \sqrt{Z(r)}a_k(r) \).

\[
\psi'' - \left[\frac{1}{2} \frac{Z''}{Z} - \frac{1}{4} \left(\frac{Z'}{Z} \right)^2 \right] \psi - k^2 \psi = 0
\]

Effective Schrödinger equation:

\[-\psi''(r) + V(r)\psi = m^2\psi, \quad k^2 = -m^2, \quad V(r) = Z^{-1/2} \left(Z^{1/2} \right)''\]
Axial Glueball Spectrum

\[V(r) \sim \begin{cases} \frac{1}{r^2} & r \to 0 \\ r^2 & r \to +\infty \end{cases} \]

- discrete tower of normalizable modes with masses \(m_n \)
- The residues (glueball decay constants) \(f_n \) are given by:

\[f_n = \sqrt{Z(0)} \left| \psi_n'(0) - \frac{1}{2} \frac{Z'(0)}{Z(0)} \psi_n(0) \right| \]

\[m_n^2 \sim n, \quad f_n \sim n \quad \Rightarrow \quad \sum \frac{f_n^2}{(k^2 + m_n^2)} \sim \sum_{n > k^2} n = \infty \]

- The sum of terms with \(n < k^2 \) gives at large \(n \) a result \(\sim k^4 \) which is roughly correct.
The importance of contact terms

\[
\tilde{G}(k) = \lim_{r \to 0} \left[Z^{1/2} \partial_r \left(Z^{-1/2} \Psi_k \right) \right], \quad \lim_{r \to 0} \frac{\Psi_k(r)}{Z^{1/2}(r)} = 1.
\]

\(\Psi_k\) non-normalizable \(\Rightarrow\) cannot expand \(\Psi_k\) in sum of normalizable eigenmodes.

FIX: extract enough powers of \(k^2\) from \(\Psi_k\) so that what’s left is normalizable:

\[
\Psi_k(r) = \psi_0(r) + k^2 \psi_2(r) + k^4 \psi_4(r) + \sum_n c_n(k) \psi_n(r)
\]

\[
\tilde{G}(k) = C_0 + C_2 k^2 + C_4 k^4 - k^6 \sum_n \frac{f_n}{m_n^6 (k^2 + m_n^2)}
\]

\[
G(x) = C_0 \delta(x) + C_2 \Box \delta(x) + C_4 \Box^2 \delta(x) - \Gamma(x)
\]
Contact terms from holography

\[G(k) = C_0 + C_2 k^2 + C_4 k^4 + k^6 \sum_n \frac{f_n}{m_n^6 (k^2 + m_n^2)} \]

Can compute iteratively from axion equation in small-\(k \) expansion:

\[\partial_r [Z a_k(r)] = k^2 a_k(r) \quad a_k(0) = 1, \quad a_k(+\infty) = 0 \]

\[a_k(r) = a_0(r) + k^2 a_1(r) + k^4 a_2(r) + \ldots \]

\[C_0 \equiv \chi_{top} = \left(\int_0^{r_{ir}} \frac{1}{Z} \right)^{-1}, \quad a_0(r) = 1 - \chi_{top} \int_0^r \frac{1}{Z} \]

\[C_{2n} = Z(0)a'_n(0) \quad a_n(r) = \int_0^r \frac{dr'}{Z(r')} \int_{r_{ir}}^{r'} dr'' Z(r'') a_{n-1}(r'') \]
Renormalization and ambiguities

- C_0 is finite and unambiguous;
- C_2 and C_4 have quadratic and log divergences.
- Holographic renormalization removes them up to scheme-dependent finite counterterms

\[S^{(2)}_{ct} = C_2^{ct} \int_{r=\epsilon} d^4x \sqrt{\gamma} \phi^{\frac{d-2}{\Delta}} \gamma^{\mu\nu} \partial_\mu a \partial_\nu a \rightarrow C_2^{ct} \int d^4x \, m^2 \partial_\mu a \partial^\mu a \]

\[S^{(4)}_{ct} = C_4^{ct} \int_{r=\epsilon} d^4x \sqrt{\gamma} \gamma^{\mu\nu} \gamma^{\rho\sigma} (\partial_\mu \partial_\nu a)(\partial_\rho \partial_\sigma a) \rightarrow C_4^{ct} \int d^4x \, (\partial_\mu \partial^\mu a)^2 \]

To match the correlator with lattice we must fix this scheme-dependence.
Conclusion

Axion dynamics in AdS/CFT:

- Rich phenomenology in axial sector
 - Running of θ-angle
 - Multiple vacua
- Clean environment to compare with Lattice
 - Axial glueball spectrum
 - Two-point correlator
 - Precise identification of contact terms
Towards the real world

Take a background generated by a single scalar λ, dual to $Tr F^2$, and representing the running t’Hooft coupling Gursoy, Kiritsis, Mazzanti, FN 08-09

$$S_{bkg} = N^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V(\lambda) \right]$$
Towards the real world

Take a background generated by a single scalar λ, dual to $Tr F^2$, and representing the running t’Hooft coupling Gursoy, Kiritsis, Mazzanti, FN 08-09

$$S_{bkg} = N^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V(\lambda) \right]$$

- UV asymptotic freedom, confinement, 0^{++} and 2^{++} glueball spectrum and thermodynamics in agreement with lattice, can be achieved by an appropriate choice of $V(\lambda)$.
Towards the real world

Take a background generated by a single scalar λ, dual to $Tr F^2$, and representing the running t’Hooft coupling Gursoy, Kiritsis, Mazzanti, FN 08-09

$$S_{bkg} = N^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V(\lambda) \right]$$

- UV asymptotic freedom, confinement, 0^{++} and 2^{++} glueball spectrum and thermodynamics in agreement with lattice, can be achieved by an appropriate choice of $V(\lambda)$.
- The solution has asymptotics:

$$e^{A(r)} \sim \begin{cases} \frac{\ell^2}{\rho^2} & r \to 0 \\ e^{-2\Lambda^2 r^2} & r \to \infty \end{cases} \quad \lambda(r) \sim \begin{cases} \frac{1}{\beta_0 \ln r} & r \to 0 \\ r e^{3\Lambda^2 r^2/2} & r \to \infty \end{cases}$$
Parametrizing the axion Lagrangian

\[S_\alpha = \frac{1}{2} \int \sqrt{-g} Y(\lambda) (\partial \alpha)^2 \]

\[Y(\lambda) = Y_0 \left(1 + c_1 \lambda + c_4 \lambda^4 \right) \]
Parametrizing the axion Lagrangian

\[S_a = \frac{1}{2} \int \sqrt{-g} Y(\lambda) (\partial a)^2 \]

\[Y(\lambda) = Y_0 \left(1 + c_1 \lambda + c_4 \lambda^4 \right) \]

↓ ↓

Finite \(\chi_{top} \) Universal Regge slopes
Parametrizing the axion Lagrangian

\[S_a = \frac{1}{2} \int \sqrt{-g} Y(\lambda)(\partial a)^2 \]

\[Y(\lambda) = Y_0 \left(1 + c_1 \lambda + c_4 \lambda^4 \right) \]

↓ ↓ ↓

Free parameters to fix by matching lattice/experiment
Parametrizing the axion Lagrangian

\[S_a = \frac{1}{2} \int \sqrt{-g} Y(\lambda) (\partial \alpha)^2 \]

\[Y(\lambda) = Y_0 \left(1 + c_1 \lambda + c_4 \lambda^4 \right) \]

Discrete 0^{--} spectrum with asymptotics (from WKB method)

\[m_n^2 \sim n, \quad f_n \sim n \]
Parametrizing the axion Lagrangian

\[S_a = \frac{1}{2} \int \sqrt{-g} Y(\lambda) (\partial a)^2 \]

\[Y(\lambda) = Y_0 \left(1 + c_1 \lambda + c_4 \lambda^4 \right) \]

Discrete 0^{-+} spectrum with asymptotics (from WKB method)

\[m_n^2 \sim n, \quad f_n \sim n \]

For $c_1 = 0, c_4 = 0.26$ one finds a good match with Lattice result for the lowest lying 0^{-+} states.

<table>
<thead>
<tr>
<th></th>
<th>5d model</th>
<th>lattice hep-lat/9901004</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{0^{-+}}/m_{0^{++}}$</td>
<td>1.50</td>
<td>1.50(4)</td>
</tr>
<tr>
<td>$m_{0^{*-+}}/m_{0^{++}}$</td>
<td>2.10</td>
<td>2.11(6)</td>
</tr>
</tbody>
</table>
Matching the lattice 0^{-+} spectrum

The spectrum is rather insensitive to the details of $Y(\lambda)$.

Changing c_1 between zero and 100 (with c_4 conditioned to keep $m_{0^{-+}}$ fixed) only affects the first excited state in the tower.
Full Correlator

The best shot at testing the model is to compute the full correlator. We can do it in position space, and compare directly with a lattice computation (in progress)

\[
\langle \tilde{O}(x)\tilde{O}(0) \rangle = \square^3 \left(\frac{1}{|x|} \sum_{n=0}^{\infty} \frac{f_n^2}{m_n^5} K_1(m_n |x|) \right)
\]

the plots correspond to the two point function with \(c_1 = 0 \) and \(c_1 = 5 \).