Source identities for relativistic models of CMS type

Thanks to E. Langmann (KTH), M. Hallnäs (Chalmers), S. Ruijsenaars (Leeds), J.F. van Diejen (Talca) and M. Noumi (Kobe)

Farrokh Atai

JSPS International Research Fellow,
Department of Mathematics, Kobe University

Elliptic integrable systems, special functions and quantum field theory
Nordita, 18 June 2019
Non-relativistic models
Trigonometric A-type: Sen’s model
A generalization of the Sutherland model:

$$\mathcal{H}_N^A(X; m) = -\sum_{J=1}^{N} \frac{1}{m_J} \frac{\partial^2}{\partial X_J^2} + \sum_{1 \leq J < K \leq N} \gamma_{J,K} \cdot \sin(X_J - X_K)^{-2}$$

where

$$\gamma_{J,K} = \lambda(m_J + m_K)\left(\lambda m_J m_K - 1\right)$$

(D. Sen 1996)

Pertinent eigenfunction:

$$\Phi_0^A(X, m) = \prod_{1 \leq J < K \leq N} \sin(X_J - X_K)^{\lambda m_J m_K}$$

satisfying the eigenvalue equation

$$(\mathcal{H}_N^A(X; m) - \mathcal{E}_0) \Phi_0^A(X; m) = 0, \quad \mathcal{E}_0 = \mathcal{E}_0(N, m, \lambda).$$

"=Source identity for non-relativistic trigonometric A-type"
Trigonometric A-type: Sen’s model

A generalization of the Sutherland model:

$$H^A_N(X; m) = - \sum_{J=1}^{N} \frac{1}{m_J} \frac{\partial^2}{\partial X_J^2} + \sum_{1 \leq J < K \leq N} \gamma_{J,K} \cdot \sin(X_J - X_K)^{-2}$$

where

$$\gamma_{J,K} = \lambda (m_J + m_K) (\lambda m_J m_K - 1)$$

(D. Sen 1996)

- Specialization 1: Let $N = N \in \mathbb{Z}_{>0}$ and $m_J = 1$ for all J, $H^A_N \rightarrow H^A_N(x; \lambda)$ and Φ^A_0 reduces to the groundstate eigenfunction for the Sutherland Schrödinger operator $\psi_0(x; \lambda)$.

- Specialization 2: Let $N = N + M$ and $m_J = 1$ for $J = 1, \ldots, N$ and $m_J = -1$ for $J = N + 1, \ldots, M$, $H^A_N \rightarrow H^A_N(x; \lambda) - H^A_M(y; \lambda)$ and $\Phi^A_0 \rightarrow$ "kernel function"

- Specialization 3: Let $N = N + \tilde{M}$ and $m_J = 1$ for $J = 1, \ldots, N$ and $m_J = +1/\lambda$ for $J = N + 1, \ldots, \tilde{M}$, $H^A_N \rightarrow H_N(x; \lambda) + \lambda H^A_{\tilde{M}}(\tilde{y}; +1/\lambda)$ and $\Phi^A_0 \rightarrow$ "dual-kernel function".
Trigonometric A-type: Sen’s model

A generalization of the Sutherland model:

$$
\mathcal{H}_N^A(X; m) = -\sum_{J=1}^{N} \frac{1}{m_J} \frac{\partial^2}{\partial X_J^2} + \sum_{1 \leq J < K \leq N} \gamma_{J,K} \cdot \sin(X_J - X_K)^{-2}
$$

where

$$
\gamma_{J,K} = \lambda (m_J + m_K)(\lambda m_J m_K - 1)
$$

(D. Sen 1996)

Specialization 4: Let $N = N + \tilde{N}$ and $m_J = 1$ for $J = 1, \ldots, N$ and $m_J = -1/\lambda$ for $J - N = 1, \ldots, \tilde{N}$,

$$
\mathcal{H}_N^A \to H_{N,\tilde{N}}(x; \tilde{x}; \lambda) = H_N(x; \lambda) - \lambda H_{\tilde{N}}(\tilde{x}; 1/\lambda)
$$

$$
+ 2(1 - \lambda) \sum_{j=1}^{N} \sum_{k=1}^{\tilde{N}} \sin(x_j - \tilde{x}_k)^{-2}
$$

becomes the differential operator defining the deformed CMS model of type A (Chalykh, Feigin, and Veselov 1998, Sergeev 2001 & 2002)
Trigonometric A-type: Sen’s model
A generalization of the Sutherland model:

$$
\mathcal{H}^A_N(\mathbf{X} \,; \, \boldsymbol{m}) = - \sum_{J=1}^{N} \frac{1}{m_J} \frac{\partial^2}{\partial X_J^2} + \sum_{1 \leq J < K \leq N} \gamma_{J,K} \cdot \sin(\mathbf{X}_J - \mathbf{X}_K)^{-2}
$$

where

$$
\gamma_{J,K} = \lambda (m_J + m_K) (\lambda m_J m_K - 1)
$$

(D. Sen 1996)

Specialization 5: Let $\mathcal{N} = N + \tilde{N} + M + \tilde{M}$ and

$$
m_J = \begin{cases}
1, & J = 1, \ldots, N \\
-1/\lambda, & J - N = 1, \ldots, \tilde{N} \\
-1, & J - N - \tilde{N} = 1, \ldots, M \\
+1/\lambda, & J - N - \tilde{N} - M = 1, \ldots, \tilde{M}
\end{cases}
$$

\Rightarrow Kernel function identity for a pair of deformed CMS operators
Trigonometric \textit{BC}-type:

Generalization of the \textit{BC}-type CMS model

\[
\mathcal{H}_{N}^{BC}(X; m) = \sum_{J=1}^{N} \frac{1}{m_J} \left(-\frac{\partial^2}{\partial X_j^2} + \sum_{\nu=0}^{1} d_{\nu,J}(d_{\nu,J} - 1) \sin(X_j + \frac{1}{2}\omega_{\nu})^{-2}\right)
+ \sum_{1\leq J<K\leq N} \gamma_{J,K} \left(\sin(X_J + X_K)^{-2} + \sin(X_J - X_K)^{-2}\right)
\]

where \(\omega_0 = 0\), \(\omega_1 = \pi\), and \(d_{\nu,J} = m_J d_{\nu} + \frac{1}{2} \lambda m_J (m_J - 1)\) (Hallnäss and Langmann 2010)

Pertinent eigenfunction:

\[
\Phi_{0}^{BC} = \prod_{J=1}^{N} \prod_{\nu=0}^{1} \sin(X_J + \frac{1}{2}\omega_{\nu})^{d_{\nu,J}} \prod_{1\leq J<K\leq N} \left[\sin(X_J - X_K) \sin(X_J + X_K)\right]^{\lambda m_J m_K}
\]

satisfying the eigenvalue equation \((\mathcal{H}_{N}^{BC}(X; m) - \mathcal{E}_{0}^{BC})\Phi_{0}^{BC}(X; m) = 0\)
Trigonometric BC-type:

Generalization of the BC-type CMS model

$$
\mathcal{H}^{BC}_{N}(X; m) = \sum_{J=1}^{N} \frac{1}{m_J} \left(-\frac{\partial^2}{\partial X_j^2} + \sum_{\nu=0}^{1} d_{\nu,J} (d_{\nu,J} - 1) \sin(X_j + \frac{1}{2}\omega_{\nu})^{-2} \right)
+ \sum_{1\leq J<K\leq N} \gamma_{J,K} \left(\sin(X_J + X_K)^{-2} + \sin(X_J - X_K)^{-2} \right)
$$

where $\omega_0 = 0$, $\omega_1 = \pi$, and $d_{\nu,J} = m_J d_{\nu} + \frac{1}{2}\lambda m_J (m_J - 1)$

(Hallnäs and Langmann 2010)

Specializations \Rightarrow groundstate eigenfunction and eigenvalue identity, deformed BC-type differential operator, i.e.

$$
H^\ast_{N,\tilde{N}} = H_N(x; \{d_{\nu}\}, \lambda) - \lambda H_{\tilde{N}}(\tilde{x}; \{(1 + \lambda - 2d_{\nu})/2\lambda\}, 1/\lambda)
+ 2(1 - \lambda) \sum_{j=1}^{N} \sum_{k=1}^{\tilde{N}} \sin(x_j - \tilde{x}_k)^{-2} + \sin(x_j + \tilde{x}_k)^{-2},
$$

and ‘groundstate’ eigenvalue identity, and various kernel function identities

(Hallnäs and Langmann, Sergeev and Veselov)
Elliptic cases

Elliptic generalizations? Yes!
Replace potential with \(\varphi(x), \vartheta_1, \vartheta_2, \vartheta_3, \vartheta_4 \),

Elliptic \(A \)-type:

- Source identity under balancing condition \(\lambda \sum J m_J = 0 \)
 (Langmann 2010)

- Specializations \(\Rightarrow \) deformed elliptic \(A \)-type differential operator and
 ‘groundstate’ eigenvalue identity \((\lambda N - \tilde{N} = 0) \), and various kernel function
 identities
 (Chalykh, Feigin, and Veselov, Khodarinova, Langmann)

Elliptic \(BC \)-type:

- Source identity under balancing condition \(2\lambda \sum J m_J + \sum \nu d_\nu = 0 \)
 (Langmann and Takemura 2012)

- Specializations \(\Rightarrow \) groundstate eigenvalue identity, deformed elliptic CMS
 operator and ‘groundstate’ eigenvalue identity \((2\lambda N - \tilde{N} + \sum \nu d_\nu = 0) \), and
 various kernel function identities
 (Langmann and Takemura 2012)
Relativistic models
Elliptic A-type

Generalization of the elliptic Ruijsenaars model

$$
S^A_N(X; m) = \sum_{J=1}^{N} \vartheta_1(i\lambda m J \beta) \left(\prod_{K \neq J} f_+(X_J - X_K; m_J, m_K)^{1/2} \right) \\
\times \exp (+i \frac{\beta}{m_J} \frac{\partial}{\partial X_J}) \left(\prod_{K \neq J} f_-(X_J - X_K; m_J, m_K)^{1/2} \right)
$$

(FA, M. Hallnäs, and E. Langmann 2014)

where $\beta > 0$ is the “relativistic deformation” parameter and

$$
f_{\pm}(x; m, m') = \frac{\vartheta_1(x \mp i\xi(m, m') \beta \mp i\lambda m' \beta)}{\vartheta_1(x \mp i\xi(m, m') \beta)}
$$

with $\xi(m, m') = (m - m')(\lambda mm' - 1)/4mm'$
Elliptic A-type

Generalization of the elliptic Ruijsenaars model

$$S_N^A(X; m) = \sum_{J=1}^{N} \vartheta_1(i \lambda m_J \beta) \left(\prod_{K \neq J} f_+(X_J - X_K; m_J, m_K)^{\frac{1}{2}} \right)$$

$$\times \exp(+i \frac{\beta}{m_J} \frac{\partial}{\partial X_J}) \left(\prod_{K \neq J} f_-(X_J - X_K; m_J, m_K)^{\frac{1}{2}} \right)$$

(FA, M. Hallnäs, and E. Langmann 2014)

Pertinent eigenfunction of the form

$$\Phi_0^A(X; m) = \prod_{1 \leq J < K \leq N} \phi(X_J - X_K; m_J, m_K)$$

for $m \in \{1, -1, +1/\lambda, -1/\lambda\}$ satisfying $S_N^A(X; m) \Phi_0^A(X; m) = 0$ under the balancing condition $\lambda \sum_J m_J = 0$.
Elliptic A-type

Generalization of the elliptic Ruijsenaars model

$$S^A_N(X; m) = \sum_{J=1}^{N} \vartheta_1(i\lambda m_J \beta) \left(\prod_{K \neq J} f_+(X_J - X_K; m_J, m_K)^{\frac{1}{2}} \right) \times \exp(+i \frac{\beta}{m_J} \frac{\partial}{\partial X_J}) \left(\prod_{K \neq J} f_-(X_J - X_K; m_J, m_K)^{\frac{1}{2}} \right)$$

(FA, M. Hallnäs, and E. Langmann 2014)

Specializations \Rightarrow kernel function identities for pairs of Ruijsenaars operators (Ruijsenaars 2006 and Komori, Noumi, and Shiraishi 2009)

Also, Chalykh-Feigin-Sergeev-Veselov type generalization of Ruijsenaars model
Elliptic deformed A-type

Generalization of the elliptic Ruijsenaars model

$$S_{N,\tilde{N}}^A(x, \tilde{x}; \lambda, \beta) = \sum_{j=1}^{N} \left(A_j^+ \right)^{1/2} e^{i\beta \frac{\partial}{\partial x_j}} \left(A_j^- \right)^{1/2} - \frac{\vartheta_1(i\beta)}{\vartheta_1(i\lambda\beta)} \sum_{k=1}^{\tilde{N}} \left(B_k^+ \right)^{1/2} e^{-i\lambda\beta \frac{\partial}{\partial \tilde{x}_k}} \left(B_k^- \right)^{1/2}$$

with ‘groundstate’ eigenfunction

$$\Psi_{N,\tilde{N}}^A(x, \tilde{x}; \lambda, \beta) = \frac{\Psi_N^A(x; \lambda, \beta) \Psi_{\tilde{N}}^A(\tilde{x}; 1/\lambda, \lambda\beta)}{\prod_{j}^{N} \prod_{k}^{\tilde{N}} \left[\vartheta_1(x_j - \tilde{x}_k + i\frac{1}{2}(\lambda - 1)\beta) \vartheta_1(x_j - \tilde{x}_k - i\frac{1}{2}(\lambda - 1)\beta) \right]^{1/2}}$$

with Ψ_N^A the groundstate for the Ruijsenaars model (balancing condition $\lambda N - \tilde{N} = 0$).

Gauge transform w.r.t. $\Psi_{N,\tilde{N}}^A$, i.e. $A_{N,\tilde{N}}^A = (\Psi_{N,\tilde{N}}^A)^{-1} \circ S_{N,\tilde{N}}^A \circ \Psi_{N,\tilde{N}}^A$ yields a more familiar form:
Elliptic deformed A-type

Generalization of the elliptic Ruijsenaars model

$$\mathcal{A}_{N,\tilde{N}}^A(x,\tilde{x};\lambda,\beta) = \sum_{j=1}^{N} A_j^+ \exp(i\beta \frac{\partial}{\partial x_j}) - \frac{\vartheta_1(i\beta)}{\vartheta_1(i\lambda\beta)} \sum_{k=1}^{\tilde{N}} B_k^+ \exp(-i\lambda\beta \frac{\partial}{\partial \tilde{x}_k})$$

with coefficients

$$A_j^+ = \prod_{j' \neq j}^{N} \left(\frac{\vartheta_1(x_j - x_{j'}) + i\lambda\beta}{\vartheta_1(x_j - x_{j'})} \right) \prod_{k=1}^{\tilde{N}} \left(\frac{\vartheta_1(x_j - \tilde{x}_k + \frac{1}{2}i(\lambda - 1)\beta)}{\vartheta_1(x_j - \tilde{x}_k + \frac{1}{2}i(\lambda + 1)\beta)} \right)$$

$$B_k^+ = \prod_{k' \neq k}^{\tilde{N}} \left(\frac{\vartheta_1(\tilde{x}_k - \tilde{x}_{k'}) - i\beta}{\vartheta_1(\tilde{x}_k - \tilde{x}_{k'})} \right) \prod_{j=1}^{N} \left(\frac{\vartheta_1(\tilde{x}_k - x_j + \frac{1}{2}i(\lambda - 1)\beta)}{\vartheta_1(\tilde{x}_k - x_j - \frac{1}{2}i(\lambda + 1)\beta)} \right)$$
Elliptic deformed A-type

Generalization of the elliptic Ruijsenaars model

\[A_{N,\tilde{N}}^A (x, \tilde{x}; \lambda, \beta) = \sum_{j=1}^{N} A^+_j \exp(i\beta \frac{\partial}{\partial x_j}) - \frac{\vartheta_1(i\beta)}{\vartheta_1(i\lambda \beta)} \sum_{k=1}^{\tilde{N}} B^+_k \exp(-i\lambda \beta \frac{\partial}{\partial \tilde{x}_k}) \]

and obtain \((A_{N,\tilde{N}}^A (x, \tilde{x}; \lambda, \beta) - A_{M,\tilde{M}}^A (-y, -\tilde{y}; \lambda, \beta)) K_{N,\tilde{N},M,\tilde{M}} (x, \tilde{x}, y, \tilde{y}) = 0 \), for (balancing condition \(\lambda(N - M) - (\tilde{N} - \tilde{M}) = 0 \))

\[K_{N,\tilde{N},M,\tilde{M}} (x, \tilde{x}, y, \tilde{y}) = \left(\prod_{j=1}^{N} \prod_{K=1}^{M} \frac{G(x_j - y_k - i\frac{1}{2} \lambda \beta; \beta)}{G(x_j - y_k + i\frac{1}{2} \lambda \beta; \beta)} \right) \left(\prod_{j=1}^{\tilde{N}} \prod_{k'=1}^{\tilde{M}} \vartheta_1(x_j - \tilde{y}_{k'}) \right) \]

\[\times \left(\prod_{j'=1}^{\tilde{N}} \prod_{k=1}^{M} \vartheta_1(\tilde{x}_{j'} - y_k) \right) \left(\prod_{j'=1}^{\tilde{N}} \prod_{k'=1}^{\tilde{M}} \frac{G(\tilde{x}_{j'} - \tilde{y}_{k'} - i\frac{1}{2} \beta; \lambda \beta)}{G(\tilde{x}_{j'} - \tilde{y}_{k'} + i\frac{1}{2} \beta; \lambda \beta)} \right) \]

where \(G(x; \alpha) \) is the elliptic Gamma function: \(G(x + i\frac{1}{2} \alpha; \alpha)/G(x - i\frac{1}{2} \alpha; \alpha) = \text{const.} \cdot \vartheta_1(x) \).
Elliptic BC-type

Generalization of the van Diejen model

$$S_{N}^{BC}(X; m) = \sum_{\varepsilon=\pm} \sum_{J=1}^{N} \vartheta_{1}(i\lambda m_{J}\beta)(V_{J}^{\varepsilon})^{\frac{1}{2}} \exp(-\varepsilon i \frac{\beta}{m_{J}} \frac{\partial}{\partial X_{J}})(V_{J}^{-\varepsilon})^{\frac{1}{2}} + V^{0}(X; m)$$

for $m \in \{1, -1/\lambda, -1, +1/\lambda\}^{N}$,

where

$$V^{\pm} = \frac{\prod_{\nu=0}^{7} \vartheta_{1}(\pm X_{J} - ig_{\nu,J}\beta)}{\vartheta_{1}(\pm 2X_{J})\vartheta_{1}(\pm 2X_{J} - i\beta/m_{J})} \prod_{\delta=\pm} \prod_{K \neq J} f_{\pm}(X_{J} + \delta X_{K}; m_{J}, m_{K})$$

for $g_{\nu,J} = g_{\nu} - \lambda(m_{J} - 1)/4 + (1/m_{J} - 1)/4$ and V^{0} an elliptic function.
Elliptic BC-type

Generalization of the van Diejen model

$$S_{N}^{BC}(X; m) = \sum_{\varepsilon=\pm} \sum_{J=1}^{N} \vartheta_{1}(i\lambda m_{J} \beta)(\mathcal{V}_{J}^{\varepsilon})^{1/2} \exp(-\varepsilon i \beta \frac{\partial}{m_{J} \partial X_{J}})(\mathcal{V}_{J}^{\varepsilon})^{1/2} + \mathcal{V}^{0}(X; m)$$

for $m \in \{1, -1/\lambda, -1, +1/\lambda\}^{N}$,

Pertinent eigenfunction of the form

$$\Phi_{0}^{BC}(X; m) = \left(\prod_{J=1}^{N} \psi(X_{J}; m_{J})\right) \left(\prod_{\varepsilon, \delta=\pm} \prod_{1 \leq J < K \leq N} \phi(\varepsilon X_{J} + \delta X_{K}; m_{J}, m_{K})\right)$$

for $m \in \{1, -1, +1/\lambda, -1/\lambda\}^{N}$ satisfying $S_{N}^{BC}(X; m)\Phi_{0}^{BC}(X; m) = 0$ under the balancing condition $2\lambda \sum_{J} m_{J} + \sum_{\nu=0}^{7} g_{\nu} - 2(\lambda + 1) = 0$.
Elliptic BC-type

Generalization of the van Diejen model

$$S_{N}^{BC}(X; m) = \sum_{\varepsilon=\pm}^{N} \vartheta_1(i\lambda m J \beta)(\mathcal{V}_J^\varepsilon)^{\frac{1}{2}} \exp(-\varepsilon i \frac{\beta}{m J} \frac{\partial}{\partial X_J})(\mathcal{V}_J^{-\varepsilon})^{\frac{1}{2}} + \mathcal{V}^0(X; m)$$

for $m \in \{1, -1/\lambda, -1, +1/\lambda\}^N$,

Specializations \Rightarrow groundstate eigenvalue identity and kernel function identities for pairs of van Diejen operators (different couplings)

(Ruijsenaars 2009 and Komori, Noumi, and Shiraishi 2009)

Also, Chalykh-Feigin-Sergeev-Veselov type generalization of the van Diejen model
Elliptic deformed BC-type

Generalization of the van Diejen model: Conjugate with ‘groundstate’ function

\[\Psi_{N,\tilde{N}}^{BC} = \frac{\Psi_N^{BC}(x; \{g_\nu\}, \lambda, \beta) \Psi_{\tilde{N}}^{BC}(\tilde{x}; \{ (\lambda + 1 - 2g_\nu) / 2\lambda \}, 1/\lambda, \lambda \beta)}{\prod_{j=1}^N \prod_{k=1}^{\tilde{N}} \prod_{\varepsilon, \delta = \pm} \vartheta_1(\varepsilon x_j + \delta \tilde{x}_k + i \frac{1}{2} (\lambda - 1) \beta^{1/2})}\]

i.e. \[A_{N,\tilde{N}}^{BC} = (\Psi_{N,\tilde{N}}^{BC})^{-1} \circ S_{N,\tilde{N}}^{BC} \circ \Psi_{N,\tilde{N}}^{BC}\]

then

\[A_{N,\tilde{N}}^{BC} = \sum_{\varepsilon = \pm} \sum_{j=1}^N V_j^\varepsilon e^{-i\varepsilon \beta \frac{\partial}{\partial x_j}} - \frac{\vartheta_1(i\beta)}{\vartheta_1(i\lambda \beta)} \sum_{k=1}^{\tilde{N}} V_k^\varepsilon e^{+i\varepsilon \lambda \beta \frac{\partial}{\partial \tilde{x}_k}} + V^0\]
Elliptic deformed BC-type

Generalization of the van Diejen model:

$$A_{N,\tilde{N}}^{BC} = \sum_{\epsilon=\pm} \sum_{j=1}^{N} V^{\epsilon} e^{-i\epsilon\beta \frac{\partial}{\partial x_j}} - \frac{\vartheta_1(i\beta)}{\vartheta_1(i\lambda\beta)} \sum_{k=1}^{\tilde{N}} \tilde{V}^{\epsilon} e^{+\epsilon\lambda\beta \frac{\partial}{\partial \tilde{x}_k}} + V^0$$

with coefficients ($\tilde{g}_\nu = (\lambda + 1 - 2g_\nu)/2\lambda$)

$$V^{\pm}_j = U(\pm x_j; \{g_\nu\}, \beta) \prod_{\delta=\pm} \prod_{j' \neq j} f^{\pm}(x_j + \delta x_{j'}; 1, 1) \prod_{k=1}^{\tilde{N}} f^{\pm}(x_j + \delta \tilde{x}_k; 1, -1/\lambda)$$

$$\tilde{V}^{\pm}_k = U(\mp \tilde{x}_k; \{\tilde{g}_\nu\}, \lambda\beta) \prod_{\delta=\pm \pm} \prod_{k' \neq k} f^{\pm}(\tilde{x}_k + \delta \tilde{x}_{k'}; -1/\lambda, -1/\lambda) \prod_{j=1}^{N} f^{\pm}(\tilde{x}_k + \delta x_j; -1/\lambda, 1)$$

$$U(x; \{g_\nu\}, \beta) = \prod_{\nu=0}^{7} \vartheta_1(x - ig_\nu \beta)\vartheta_1(2x)\vartheta_1(2x - i\beta), \quad f^{\pm}(x; m, m') = \frac{\vartheta_1(x \mp i\frac{1}{2}\lambda(m + m')\beta)}{\vartheta_1(x \mp i\frac{1}{2}\lambda(m - m')\beta)}$$
Elliptic deformed BC-type

Generalization of the van Diejen model:
Let $2\lambda(N - 1) - 2(\tilde{N} + 1) + \sum_{\nu} g_{\nu} = 0$ for simplicity, then

$$\mathcal{A}_{N,\tilde{N}}^{BC} = \sum_{\varepsilon = \pm} \sum_{j=1}^{N} V_{j}^{\varepsilon} \left(e^{-i\varepsilon \beta \frac{\partial}{\partial x_j}} - 1 \right) - \frac{\vartheta_1(i\beta)}{\vartheta_1(i\lambda\beta)} \sum_{k=1}^{\tilde{N}} \tilde{V}_{k}^{\varepsilon} \left(e^{+i\varepsilon \lambda \beta \frac{\partial}{\partial \tilde{x}_k}} - 1 \right)$$

with coefficients $(\tilde{g}_{\nu} = (\lambda + 1 - 2g_{\nu})/2\lambda)$

$$V_{j}^{\pm} = U(\pm x_j; \{g_{\nu}\}, \beta) \prod_{\delta = \pm} \prod_{j' \neq j} f_{\pm}(x_j + \delta x_{j'}; 1, 1) \prod_{k=1}^{\tilde{N}} f_{\pm}(x_j + \delta \tilde{x}_k; 1, -\frac{1}{\lambda})$$

$$\tilde{V}_{k}^{\pm} = U(\mp \tilde{x}_k; \{\tilde{g}_{\nu}\}, \lambda\beta) \prod_{\delta = \pm} \prod_{k' \neq k} f_{\pm}(\tilde{x}_k + \delta \tilde{x}_{k'}; -\frac{1}{\lambda}, -\frac{1}{\lambda}) \prod_{j=1}^{N} f_{\pm}(\tilde{x}_k + \delta x_{j}; -\frac{1}{\lambda}, 1)$$

$$U(x; \{g_{\nu}\}, \beta) = \prod_{\nu=0}^{7} \frac{\vartheta_1(x - ig_{\nu}\beta)}{\vartheta_1(2x)\vartheta_1(2x - i\beta)}$$

$$f_{\pm}(x; m, m') = \frac{\vartheta_1(x \mp i\frac{1}{2} \lambda(m + m')\beta)}{\vartheta_1(x \mp i\frac{1}{2} \lambda(m - m')\beta)}$$
Elliptic deformed BC-type

Generalization of the van Diejen model:

$$
\mathcal{A}_{N,\tilde{N}}^{BC} = \sum_{\varepsilon=\pm} \sum_{j=1}^{N} V_j^\varepsilon e^{-i\varepsilon\beta \frac{\partial}{\partial x_j}} - \frac{\vartheta_1(i\beta)}{\vartheta_1(i\lambda\beta)} \sum_{k=1}^{\tilde{N}} \tilde{V}_k^\varepsilon e^{+i\lambda\beta \frac{\partial}{\partial \tilde{x}_k}} + V^0
$$

and obtain

$$(\mathcal{A}_{N,\tilde{N}}^{BC}(\mathbf{x}, \tilde{\mathbf{x}}, \{g_\nu\}, \lambda, \beta) - \mathcal{A}_{M,\tilde{M}}^{BC}(\mathbf{y}, \tilde{\mathbf{y}}, \{\frac{1}{2}(\lambda + 1) - g_\nu\}, \lambda, \beta)) K_{N,\tilde{N},M,\tilde{M}}^{BC} = 0$$

for (balancing condition $2\lambda(N - M - 1) - 2(\tilde{N} - \tilde{M} + 1) + \sum_\nu g_\nu = 0$)

$$
K_{N,\tilde{N},M,\tilde{M}}^{BC} = \left(\prod_{j=1}^{N} \prod_{k=1}^{M} \prod_{\varepsilon, \delta = \pm} G(\varepsilon x_j + \delta y_k - i\frac{1}{2} \lambda \beta; \beta) \right) \left(\prod_{j=1}^{N} \prod_{k'=1}^{\tilde{M}} \prod_{\delta = \pm} \vartheta_1(x_j + \delta \tilde{y}_{k'}) \right)
$$

$$\times \left(\prod_{j'=1}^{\tilde{N}} \prod_{k=1}^{M} \prod_{\varepsilon, \delta = \pm} \vartheta_1(\tilde{x}_{j'} + \delta y_k) \right) \left(\prod_{j'=1}^{\tilde{N}} \prod_{k'=1}^{\tilde{M}} \prod_{\varepsilon, \delta = \pm} G(\varepsilon \tilde{x}_{j'} + \delta \tilde{y}_{k'} - i\frac{1}{2} \beta; \lambda\beta) \right)$$
Summary:

- Constructed generalizations of the first difference operator of Ruijsenaars and van Diejen models and found an exact eigenfunction of these operators.
- Specializing the 'mass' parameters yields deformed generalizations of Ruijsenaars and van Diejen models and their kernel function identities.

Outlook:

- Higher order difference operators of deformed elliptic models.
- Special functions related to the deformed elliptic models.
- Application of relativistic deformed models to other areas of mathematics and physics.
- As always: A way of removing the balancing condition.
Thank you!