Elliptic Stirling and Lah numbers

Michael J. Schlosser

based on joint work with

Zsófia R. Kereskényiné Balogh, and with Meesue Yoo

Faculty of Mathematics

partially supported by the
Austrian Science Funds

June 20, 2019 Elliptic Integrable Systems, Special Functions
and Quantum Field Theory
Nordita, Stockholm
Outline

1. Classical Stirling and Lah numbers
2. Carlitz’ q-Stirling numbers
3. Garsia and Remmel’s q-Lah numbers
4. Elliptic Stirling numbers
5. Elliptic Lah numbers
Classical Stirling and Lah numbers

We recall some facts about the Stirling numbers of the second and the first kind.

We denote the falling factorials by

\[x \overset{n}{\ldots}_{1} := \begin{cases} x(x-1)\ldots(x-n+1) & \text{if } n = 1, 2, \ldots, \text{ or } \text{if } n = 0, \\ 1 & \text{if } n = 0. \end{cases} \]

Similarly, we denote the raising factorials by

\[x \overset{n}{\ldots}^1 := \begin{cases} x(x+1)\ldots(x+n-1) & \text{if } n = 1, 2, \ldots, \text{ or } \text{if } n = 0, \\ 1 & \text{if } n = 0. \end{cases} \]
We recall some facts about the Stirling numbers of the second and the first kind.
We recall some facts about the **Stirling numbers** of the second and the first kind.

We denote the **falling factorials** by

\[
x^n := \begin{cases}
 x(x - 1) \ldots (x - n + 1) & \text{if } n = 1, 2, \ldots , \\
 1 & \text{if } n = 0.
\end{cases}
\]
We recall some facts about the **Stirling numbers** of the second and the first kind.

We denote the **falling factorials** by

\[
x^n := \begin{cases}
 x(x - 1) \ldots (x - n + 1) & \text{if } n = 1, 2, \ldots, \\
 1 & \text{if } n = 0.
\end{cases}
\]

Similarly, we denote the **raising factorials** by

\[
\bar{x}^n := \begin{cases}
 x(x + 1) \ldots (x + n - 1) & \text{if } n = 1, 2, \ldots, \\
 1 & \text{if } n = 0.
\end{cases}
\]
The **Stirling numbers of the second kind**, \(S(n, k) \), are defined as the following connection coefficients:

\[
x^n = \sum_{k=0}^{n} S(n, k) x^k.
\]
The Stirling numbers of the second kind, $S(n, k)$, are defined as the following connection coefficients:

$$x^n = \sum_{k=0}^{n} S(n, k) x^k.$$

As is easy to see (use $x = (x - k) + k$), the $S(n, k)$ satisfy the following recursion:

$$S(n, 0) = \delta_{n,0},$$
$$S(n, k) = 0 \quad \text{for } k > n,$$
$$S(n + 1, k) = S(n, k - 1) + k S(n, k).$$
The **Stirling numbers of the second kind**, $S(n, k)$, are defined as the following connection coefficients:

$$x^n = \sum_{k=0}^{n} S(n, k) x^k.$$

As is easy to see (use $x = (x - k) + k$), the $S(n, k)$ satisfy the following recursion:

$$S(n, 0) = \delta_{n,0},$$

$$S(n, k) = 0 \quad \text{for } k > n,$$

$$S(n + 1, k) = S(n, k - 1) + k S(n, k).$$

By replacing x by $-x$ in the defining relation (and multiplying both sides by $(-1)^n$), we immediately obtain

$$x^n = \sum_{k=0}^{n} (-1)^{n-k} S(n, k) x^k.$$

The Stirling numbers of the first kind, $s(n, k)$, are defined as the following connection coefficients:

$$x^n = \sum_{k=0}^{n} s(n, k) x^k.$$
The **Stirling numbers of the first kind**, $s(n, k)$, are defined as the following connection coefficients:

$$x^n = \sum_{k=0}^{n} s(n, k) x^k.$$

Again, as is easy to see (split $(x - n) = x - n$ into two terms), the $s(n, k)$ satisfy the following **recursion**:

$$s(n, 0) = \delta_{n,0},$$
$$s(n, k) = 0 \quad \text{for } k > n,$$
$$s(n + 1, k) = s(n, k - 1) - n s(n, k).$$
The **Stirling numbers of the first kind**, $s(n, k)$, are defined as the following connection coefficients:

$$x^n = \sum_{k=0}^{n} s(n, k) x^k.$$

Again, as is easy to see (split $(x - n) = x - n$ into two terms), the $s(n, k)$ satisfy the following *recursion*:

$$s(n, 0) = \delta_{n,0},$$
$$s(n, k) = 0 \quad \text{for } k > n,$$
$$s(n + 1, k) = s(n, k - 1) - n s(n, k).$$

We also have

$$\bar{x}^n = \sum_{k=0}^{n} (-1)^{n-k} s(n, k) x^k.$$
Clearly,

\[\sum_{k=l}^{n} S(n, k) s(k, l) = \delta_{n,l}, \]

or

\[(S(n, k))^{-1}_{n,k \in \mathbb{N}_0} = (s(k, l))_{k,l \in \mathbb{N}_0}. \]
Clearly,

\[\sum_{k=l}^{n} S(n, k) s(k, l) = \delta_{n,l}, \]

or

\[(S(n, k))_{n,k \in \mathbb{N}_0}^{-1} = (s(k, l))_{k,l \in \mathbb{N}_0}. \]

Explicit formula:

\[S(n, k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^j \binom{k}{j} (k-j)^n \]

\[= \frac{k^n}{k!} {}_nF_{n-1} \left(\begin{array}{c} 1-k, 1-k, \ldots, 1-k \end{array} ; 1; -k, \ldots, -k \right). \]
The Lah numbers $L(n, k)$, are defined as the following connection coefficients:

$$x^n = \sum_{k=0}^{n} L(n, k) x^k.$$
The **Lah numbers** $L(n, k)$, are defined as the following connection coefficients:

$$x^n = \sum_{k=0}^{n} L(n, k) x^k.$$

Thus, the Lah numbers are the result of **convolution** of the Stirling numbers of the two different kinds:

$$L(n, k) = \sum_{j=k}^{n} S(n, j)s(j, k).$$
The Lah numbers $L(n, k)$, are defined as the following connection coefficients:

$$x^n = \sum_{k=0}^{n} L(n, k) x^k.$$

Thus, the Lah numbers are the result of convolution of the Stirling numbers of the two different kinds:

$$L(n, k) = \sum_{j=k}^{n} S(n, j) s(j, k).$$

Explicit formula:

$$L(n, k) = \binom{n}{k} \frac{(n-1)!}{(k-1)!}.$$

This follows easily from the $y = n - 1$ case of the Chu-Vandermonde summation formula

$$\binom{x + y}{n} = \sum_{k=0}^{n} \binom{x}{k} \binom{y}{n-k}.$$
The Lah numbers \(L(n, k) \), are defined as the following connection coefficients:

\[
x^n = \sum_{k=0}^{n} L(n, k) x^k.
\]

Thus, the Lah numbers are the result of convolution of the Stirling numbers of the two different kinds:

\[
L(n, k) = \sum_{j=k}^{n} S(n, j)s(j, k).
\]

Explicit formula: \(L(n, k) = \binom{n}{k} \frac{(n-1)!}{(k-1)!} \).

This follows easily from the \(y = n - 1 \) case of the Chu-Vandermonde summation formula

\[
\binom{x + y}{n} = \sum_{k=0}^{n} \binom{x}{k} \binom{y}{n-k}.
\]

The Lah numbers further satisfy the recursion formula

\[
L(n + 1, k) = L(n, k - 1) + (n + k)L(n, k).
\]
Combinatorial interpretations:

- The Stirling numbers of the second kind, $S(n, k)$, count the number of possibilities to partition a set of n elements into k blocks.
- The (unsigned) Stirling numbers of the first kind, $c(n, k) = (-1)^{n-k} s(n, k)$, count the number of permutations of an n element set with exactly k cycles.
- The Lah numbers, $L(n, k)$, count the number of possibilities to arrange a set of n elements into k nonempty linearly ordered subsets.

Elliptic Stirling and Lah numbers
Combinatorial interpretations:

The Stirling numbers of the second kind, $S(n, k)$, count the number of possibilities to partition a set of n elements into k blocks.
Combinatorial interpretations:

The Stirling numbers of the second kind, $S(n, k)$, count the number of possibilities to partition a set of n elements into k blocks.

The (unsigned) Stirling numbers of the first kind, $c(n, k) = (-1)^{n-k} s(n, k)$, count the number of permutations of an n element set with exactly k cycles.
Combinatorial interpretations:

The Stirling numbers of the second kind, $S(n, k)$, count the number of possibilities to partition a set of n elements into k blocks.

The (unsigned) Stirling numbers of the first kind, $c(n, k) = (-1)^{n-k} s(n, k)$, count the number of permutations of an n element set with exactly k cycles.

The Lah numbers, $L(n, k)$, count the number of possibilities to arrange a set of n elements into k nonempty linearly ordered subsets.
In order to define Carlitz’ q-Stirling numbers of the second and the first kind, we need some q-notation. For (complex) $q \neq 1$, we define the q-number of x by

$$[x]_q := 1 - q^x.$$ (Clearly, $\lim_{q \to 1}[x]_q = x$, by de L'Hôpital's rule.)

We denote the q-falling factorials by

$$[x]_q^n := \begin{cases} [x]_q [x-1]_q \ldots [x-n+1]_q & \text{if } n = 1, 2, \ldots, \ 1 & \text{if } n = 0. \end{cases}$$

Similarly, we denote the q-raising factorials by

$$[x]_q^n := \begin{cases} [x]_q [x+1]_q \ldots [x+n-1]_q & \text{if } n = 1, 2, \ldots, \ 1 & \text{if } n = 0. \end{cases}$$
Carlitz’ \(q \)-Stirling numbers

In order to define Carlitz’ \(q \)-Stirling numbers of the second and the first kind, we need some \(q \)-notation.
Carlitz’ q-Stirling numbers

In order to define Carlitz’ q-Stirling numbers of the second and the first kind, we need some q-notation.

For (complex) $q \neq 1$, we define the q-number of x by

$$[x]_q := \frac{1 - q^x}{1 - q}.$$

(Clearly, $\lim_{q \to 1} [x]_q = x$, by de L’Hôpital’s rule.)
Carlitz’ q-Stirling numbers

In order to define Carlitz’ q-Stirling numbers of the second and the first kind, we need some q-notation.

For (complex) $q \neq 1$, we define the q-number of x by

$$[x]_q := \frac{1 - q^x}{1 - q}.$$

(Clearly, $\lim_{q \to 1}[x]_q = x$, by de L’Hôpital’s rule.)

We denote the q-falling factorials by

$$[x]_q^n := \begin{cases} [x]_q[x - 1]_q \ldots [x - n + 1]_q & \text{if } n = 1, 2, \ldots, \\ 1 & \text{if } n = 0. \end{cases}$$
Carlitz’ q-Stirling numbers

In order to define Carlitz’ q-Stirling numbers of the second and the first kind, we need some q-notation.

For (complex) $q \neq 1$, we define the q-number of x by

$$[x]_q := \frac{1 - q^x}{1 - q}.$$

(Clearly, $\lim_{q \to 1} [x]_q = x$, by de L’Hôpital’s rule.)

We denote the q-falling factorials by

$$[x]_q^n := \begin{cases} [x]_q[x-1]_q \ldots [x-n+1]_q & \text{if } n = 1, 2, \ldots, \\ 1 & \text{if } n = 0. \end{cases}$$

Similarly, we denote the q-raising factorials by

$$[x]_q^n := \begin{cases} [x]_q[x+1]_q \ldots [x+n-1]_q & \text{if } n = 1, 2, \ldots, \\ 1 & \text{if } n = 0. \end{cases}$$
Carlitz’ \(q \)-Stirling numbers of the second kind, \(S_q(n, k) \), are defined as the following connection coefficients:

\[
[x]^n_q = \sum_{k=0}^{n} S_q(n, k) [x]^k_q.
\]
Carlitz’ \(q\)-Stirling numbers of the second kind, \(S_q(n, k)\), are defined as the following connection coefficients:

\[
[x]^n_q = \sum_{k=0}^{n} S_q(n, k) [x]_q^k.
\]

As is easy to see (use \([x]_q = q^k[x - k]_q + [k]_q\)), they satisfy the following recursion:

\[
S_q(n, 0) = \delta_{n,0},
\]
\[
S_q(n, k) = 0 \quad \text{for } k > n,
\]
\[
S_q(n + 1, k) = q^{k-1}S_q(n, k - 1) + [k]_q S_q(n, k).
\]
Carlitz’ \(q\)-Stirling numbers of the second kind, \(S_q(n, k)\), are defined as the following connection coefficients:

\[
[x]^n_q = \sum_{k=0}^{n} S_q(n, k) [x]^k_q.
\]

As is easy to see (use \([x]_q = q^k[x - k]_q + [k]_q\)), they satisfy the following recursion:

\[
S_q(n, 0) = \delta_{n, 0}, \quad S_q(n, k) = 0 \quad \text{for } k > n, \quad S_q(n + 1, k) = q^{k-1}S_q(n, k - 1) + [k]_q S_q(n, k).
\]

By replacing \(x\) by \(-x\), and \(q\) by \(1/q\), in the above defining relation (and multiplying both sides by \((-q)^{-n}\)), we immediately obtain

\[
[x]^n_q = \sum_{k=0}^{n} (-q)^{k-n} S_{1/q}(n, k) [x]^k_q.
\]
The **Stirling numbers of the first kind**, $s_q(n, k)$, are defined as the following connection coefficients:

$$[x]^n_q = \sum_{k=0}^{n} s_q(n, k) [x]^k_q.$$
The **Stirling numbers of the first kind**, \(s_q(n, k)\), are defined as the following connection coefficients:

\[
[x]_q^n = \sum_{k=0}^n s_q(n, k) [x]_q^k.
\]

Again, as is not difficult to see (use \([x - n]_q = q^{-n}([x]_q - [n]_q)\)), the \(s_q(n, k)\) satisfy the following recursion:

\[
s_q(n, 0) = \delta_{n,0},
\]

\[
s_q(n, k) = 0 \quad \text{for } k > n,
\]

\[
s_q(n + 1, k) = q^{-n}(s_q(n, k - 1) - [n]_q s_q(n, k)).
\]
The **Stirling numbers of the first kind**, $s_q(n, k)$, are defined as the following connection coefficients:

$$[x]^n_q = \sum_{k=0}^{n} s_q(n, k) [x]^k_q.$$

Again, as is not difficult to see (use $[x - n]_q = q^{-n}([x]_q - [n]_q)$), the $s_q(n, k)$ satisfy the following **recursion**:

$$s_q(n, 0) = \delta_{n,0},$$
$$s_q(n, k) = 0 \quad \text{for } k > n,$$
$$s_q(n + 1, k) = q^{-n}(s_q(n, k - 1) - [n]_q s_q(n, k)).$$

We also have

$$[x]^n_q = \sum_{k=0}^{n} (-q)^{k-n} s_{1/q}(n, k) [x]^k_q.$$

Clearly,

\[\sum_{k=l}^n S_q(n, k) s_q(k, l) = \delta_{n,l}, \]

or

\[(S_q(n, k))^{-1}_{n,k \in \mathbb{N}_0} = (s_q(k, l))_{k,l \in \mathbb{N}_0}. \]
Clearly,
\[
\sum_{k=l}^{n} S_q(n, k) s_q(k, l) = \delta_{n,l},
\]
or
\[
(S_q(n, k))^{-1}_{n,k \in \mathbb{N}_0} = (s_q(k, l))_{k,l \in \mathbb{N}_0}.
\]

Explicit formula by Carlitz:
\[
S_q(n, k) = \frac{1}{[k]_q!} \sum_{j=0}^{k} (-1)^j q^{(j)} \binom{k}{j} \frac{[k - j]_q^n}{[k]_q}
\]
\[
= \frac{[k]_q^n}{[k]_q!} n^{\phi}_{n-1} \left[q^{1-k}, q^{1-k}, \ldots, q^{1-k}, q^{-k}, \ldots, q^{-k} ; q, q^{k-n} \right].
\]
Clearly,
\[\sum_{k=l}^{n} S_q(n, k) s_q(k, l) = \delta_{n,l}, \]

or
\[(S_q(n, k))^{-1}_{n,k \in \mathbb{N}_0} = (s_q(k, l))_{k,l \in \mathbb{N}_0}. \]

Explicit formula by Carlitz:

\[S_q(n, k) = \frac{1}{[k] q!} \sum_{j=0}^{k} (-1)^j q^{(j)} \binom{k}{j}_q [k-j]^n_q \]

\[= \frac{[k]^n_q}{[k] q!} n^\phi n^{-1} \left[q^{1-k}, q^{1-k}, \ldots, q^{1-k} \right]^{q^{-k}}_{q^{-k}, \ldots, q^{-k}; q, q^{k-n}}. \]

Combinatorial interpretations of Carlitz’ \(q \)-Stirling numbers of the second kind were given by

- **S. Milne** – restricted growth functions,
- **Garsia & Remmel** – rook configurations,

and others.
The \(q \)-Lah numbers \(L_q(n, k) \), can be defined as the following connection coefficients:

\[
[x^n_q] = \sum_{k=0}^{n} L_q(n, k) [x^k_q].
\]
Garsia and Remmel’s q-Lah numbers

The q-Lah numbers $L_q(n, k)$, can be defined as the following connection coefficients:

$$[x^n]_q = \sum_{k=0}^{n} L_q(n, k) [x]^k_q.$$

Thus, the q-Lah numbers are the result of convolution of the q-Stirling numbers of the two different kinds:

$$L_q(n, k) = \sum_{j=k}^{n} S_q(n, j)s_q(j, k).$$
Garsia and Remmel’s q-Lah numbers

The q-Lah numbers $L_q(n, k)$, can be defined as the following connection coefficients:

$$[x]^n_q = \sum_{k=0}^{n} L_q(n, k) [x]^k_q.$$

Thus, the q-Lah numbers are the result of convolution of the q-Stirling numbers of the two different kinds:

$$L_q(n, k) = \sum_{j=k}^{n} S_q(n, j) s_q(j, k).$$

Explicit formula:

$$L_q(n, k) = q^{k(k-1)} \begin{bmatrix} n \end{bmatrix}_q \frac{[n-1]_q!}{[k-1]_q!},$$

where $[0]_q! = 1$ and $[m]_q! = [m]_q[m - 1]_q!$, and $\begin{bmatrix} n \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$.
Garsia and Remmel’s q-Lah numbers

The q-Lah numbers $L_q(n, k)$, can be defined as the following connection coefficients:

$$[x]^n_q = \sum_{k=0}^{n} L_q(n, k) [x]^k_q.$$

Thus, the q-Lah numbers are the result of convolution of the q-Stirling numbers of the two different kinds:

$$L_q(n, k) = \sum_{j=k}^{n} S_q(n, j)s_q(j, k).$$

Explicit formula:

$$L_q(n, k) = q^{k(k-1)} \begin{bmatrix} n \end{bmatrix}_q \frac{[n-1]_q!}{[k-1]_q!},$$

where $[0]_q! = 1$ and $[m]_q! = [m]_q[m-1]_q!$, and $\begin{bmatrix} n \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$.

This can be shown to follow from the recursion formula

$$L_q(n+1, k) = q^{n+k-1}L_q(n, k-1) + [n+k]_qL_q(n, k).$$
Elliptic Stirling numbers

In order to define our new elliptic Stirling numbers of the second and the first kind, we need to introduce some notation.

Let $|p| < 1$.

(Modified Jacobi) theta functions:

$$\theta(z; p) := \left(z, \frac{p}{z}; p \right) \prod_{j=0}^{\infty} \left(1 - p^j z \right) \left(1 - \frac{p^j}{z} \right).$$

There holds

$$\theta(z; 0) = (1 - z).$$

Compact notation:

$$\theta(z_1, \ldots, z_m; p) := \theta(z_1; p) \cdots \theta(z_m; p).$$
Elliptic Stirling numbers

In order to define our new elliptic Stirling numbers of the second and the first kind, we need to introduce some notation.
In order to define our new elliptic Stirling numbers of the second and the first kind, we need to introduce some notation.

Let $|p| < 1$.

(Modified Jacobi) theta functions:

$$\theta(z; p) := (z, p/z; p)_\infty = \prod_{j=0}^{\infty} (1 - p^j z)(1 - p^{j+1}/z).$$

There holds $\theta(z; 0) = (1 - z)$.
Elliptic Stirling numbers

In order to define our new elliptic Stirling numbers of the second and the first kind, we need to introduce some notation.

Let $|p| < 1$.

(Modified Jacobi) theta functions:

$$\theta(z; p) := (z, p/z; p)_\infty = \prod_{j=0}^{\infty} (1 - p^j z)(1 - p^{j+1}/z).$$

There holds $\theta(z; 0) = (1 - z)$.

Compact notation:

$$\theta(z_1, \ldots, z_m; p) := \theta(z_1; p) \cdots \theta(z_m; p).$$
The Jacobi theta functions satisfy the following essential identities:
The Jacobi theta functions satisfy the following essential identities:

Inversion formula:

$$\theta(1/z; p) = -\frac{1}{z} \theta(z; p).$$
The Jacobi theta functions satisfy the following essential identities:

Inversion formula:

\[\theta(1/z; p) = -\frac{1}{z} \theta(z; p). \]

Quasi-periodicity:

\[\theta(pz; p) = -\frac{1}{z} \theta(z; p). \]
The Jacobi theta functions satisfy the following essential identities:

Inversion formula:

\[\theta(1/z; p) = -\frac{1}{z} \theta(z; p). \]

Quasi-periodicity:

\[\theta(pz; p) = -\frac{1}{z} \theta(z; p). \]

Addition formula:

\[
\begin{align*}
\theta(zw, z/w, uv, u/v; p) - \theta(zv, z/v, uw, u/w; p) &= \frac{u}{w} \theta(wv, y/w, zu, z/u; p).
\end{align*}
\]
Now, for (complex) a, b, q, p, $q \neq 1$, $p < 1$, we define the elliptic number of x (or the $a, b; q, p$-number of x) by

$$[x]_{a,b;q,p} := \frac{\theta(q^x, aq^x, bq^2, a/b; p)}{\theta(q, aq, bq^{1+x}, aq^{x-1}/b; p)}.$$
Now, for (complex) \(a, b, q, p, q \neq 1, p < 1\), we define the elliptic number of \(x\) (or the \(a, b; q, p\)-number of \(x\)) by

\[
[x]_{a,b;q,p} := \frac{\theta(q^x, aq^x, bq^2, a/b; p)}{\theta(q, aq, bq^{1+x}, aq^{x-1}/b; p)}.
\]

The elliptic number of \(x\) indeed extends the \(q\)-number of \(x\), which is obtained as the following limit:

\[
\lim_{b \to 0} \left(\lim_{a \to 0} \left(\lim_{p \to 0} [x]_{a,b;q,p} \right) \right) = [x]_q.
\]
Now, for (complex) \(a, b, q, p, \) \(q \neq 1, p < 1, \) we define the elliptic number of \(x \) (or the \(a, b; q, p \)-number of \(x \)) by

\[
[x]_{a,b;q,p} := \frac{\theta(q^x, aq^x, bq^2, a/b; p)}{\theta(q, aq, bq^{1+x}, aq^{x-1}/b; p)}.
\]

The elliptic number of \(x \) indeed extends the \(q \)-number of \(x \), which is obtained as the following limit:

\[
\lim_{b \to 0} \left(\lim_{a \to 0} \left(\lim_{p \to 0} [x]_{a,b;q,p} \right) \right) = [x]_q.
\]

The elliptic numbers satisfy a number of nice identities, for instance

\[
[x + 1]_{a,b;q,p} - [x]_{a,b;q,p} = \frac{\theta(aq^{1+2x}, bq, bq^2, a/b, a/bq; p)}{\theta(aq, bq^{1+x}, bq^{2+x}, aq^x/b, aq^{x-1}/b; p)} q^x
\]

(the expression on the r.h.s. is very-well-poised), among others, by the addition formula for theta functions.
We denote the elliptic falling factorials by
\[
\left[x \right]_{a, b; q, p} := \left\{ \begin{array}{ll}
\left[x \right]_{a, b; q, p} & \\
\left[x - 1 \right]_{aq^2, bq; q, p} & \\
\left[x - n + 1 \right]_{aq^{2n-2}, bq^{n-1}; q, p} & \text{if } n = 1, 2, \ldots \\
1 & \text{if } n = 0.
\end{array} \right.
\]

Similarly, we denote the elliptic raising factorials by
\[
\left[x \right]_{a, b; q, p} := \left\{ \begin{array}{ll}
\left[x \right]_{a, b; q, p} & \\
\left[x + 1 \right]_{aq^{-2}, bq^{-1}; q, p} & \\
\left[x + n - 1 \right]_{aq^{2n-2}, bq^{n-1}; q, p} & \text{if } n = 1, 2, \ldots \\
1 & \text{if } n = 0.
\end{array} \right.
\]
We denote the elliptic falling factorials by

\[
[x]_{a,b; q, p}^n :=
\begin{cases}
[x]_{a,b; q, p}[x - 1]_{aq^2, bq; q, p} \cdots [x - n + 1]_{aq^{2n-2}, bq^{n-1}; q, p} & \text{if } n = 1, 2, \ldots , \\
1 & \text{if } n = 0.
\end{cases}
\]
We denote the elliptic falling factorials by

\[
[x]^n_{a,b;q,p} := \begin{cases}
[x]_{a,b;q,p}[x - 1]_{aq^2,bq;q,p} \ldots [x - n + 1]_{aq^{2n-2},bq^{n-1};q,p} & \text{if } n = 1, 2, \ldots, \\
1 & \text{if } n = 0.
\end{cases}
\]

Similarly, we denote the elliptic raising factorials by

\[
[x]^n_{a,b;q,p} := \begin{cases}
[x]_{a,b;q,p}[x + 1]_{aq^{-2},bq^{-1};q,p} \ldots [x + n - 1]_{aq^{-2n},bq^{1-n};q,p} & \text{if } n = 1, 2, \ldots, \\
1 & \text{if } n = 0.
\end{cases}
\]
Our elliptic Stirling numbers of the second kind, $S_{a,b;q,p}(n,k)$, are defined as the following connection coefficients:

$$[x]_{a,b;q,p}^n = \sum_{k=0}^{n} S_{a,b;q,p}(n,k) [x]_{a,b;q,p}^k.$$
Our elliptic Stirling numbers of the second kind, $S_{a,b; q, p}(n, k)$, are defined as the following connection coefficients:

$$[x]_{a,b; q, p}^n = \sum_{k=0}^{n} S_{a,b; q, p}(n, k) [x]_{a,b; q, p}^k.$$

As one can verify, the $S_{a,b; q, p}(n, k)$ satisfy the following recursion:

$$S_{a,b; q, p}(n, 0) = \delta_{n,0},$$ $$S_{a,b; q, p}(n, k) = 0 \quad \text{for } k > n,$$ $$S_{a,b; q, p}(n + 1, k) = \frac{\theta(aq^{2k-1}, bq, bq^2, a/b, a/bq; p)}{\theta(aq, bq^k, bq^{1+k}, aq^{k-1}/b, aq^{k-2}/b; p)} q^{k-1}$$ $$\times S_{a,b; q, p}(n, k - 1) + [k]_{a,b; q, p} S_{a,b; q, p}(n, k).$$
Our elliptic Stirling numbers of the second kind, \(S_{a,b;q,p}(n, k) \), are defined as the following connection coefficients:

\[
[x]_{a,b;q,p}^n = \sum_{k=0}^{n} S_{a,b;q,p}(n, k) [x]_{a,b;q,p}^k.
\]

As one can verify, the \(S_{a,b;q,p}(n, k) \) satisfy the following recursion:

\[
S_{a,b;q,p}(n, 0) = \delta_{n,0},
S_{a,b;q,p}(n, k) = 0 \quad \text{for } k > n,
S_{a,b;q,p}(n + 1, k) = \frac{\theta(aq^{2k-1}, bq, bq^2, a/b, a/bq; p)}{\theta(aq, bq^k, bq^{1+k}, aq^{k-1}/b, aq^{k-2}/b; p)} q^{k-1} \times S_{a,b;q,p}(n, k - 1) + [k]_{a,b;q,p} S_{a,b;q,p}(n, k).
\]

Analogous to the \(q \)-case, one can also deduce a corresponding identity involving the elliptic raising factorials (which we omit here).
The elliptic Stirling numbers of the first kind, $s_{a,b;q,p}(n,k)$, are defined as the following connection coefficients:

$$[x]^n_{a,b;q,p} = \sum_{k=0}^{n} s_{a,b;q,p}(n,k) [x]^k_{a,b;q,p}.$$
The elliptic Stirling numbers of the first kind, $s_{a,b;q,p}(n, k)$, are defined as the following connection coefficients:

$$[x]_a^a, b; q, p = \sum_{k=0}^{n} s_{a,b;q,p}(n, k) [x]_a^k.$$

Again, as one can verify, the $s_{a,b;q,p}(n, k)$ satisfy the following recursion:

\begin{align*}
 s_{a,b;q,p}(n, 0) &= \delta_{n,0}, \\
 s_{a,b;q,p}(n, k) &= 0 \quad \text{for } k > n, \\
 s_{a,b;q,p}(n + 1, k) &= \frac{\theta(aq, bq^{1+n}, bq^{2+n}, aq^n/b, aq^{n-1}/b; p)}{\theta(aq^{1+2n}, bq, bq^2, a/b, a/bq; p)} q^{-n} \\
 &\quad \times (s_{a,b;q,p}(n, k - 1) - [n]_{a,b;q,p} s_{a,b;q,p}(n, k)).
\end{align*}
The elliptic Stirling numbers of the first kind, $s_{a,b; q, p}(n, k)$, are defined as the following connection coefficients:

$$[x]^n_{a, b; q, p} = \sum_{k=0}^{n} s_{a,b; q, p}(n, k) [x]_a^k.$$

Again, as one can verify, the $s_{a,b; q, p}(n, k)$ satisfy the following recursion:

\[
\begin{align*}
 s_{a,b; q, p}(n, 0) &= \delta_{n,0}, \\
 s_{a,b; q, p}(n, k) &= 0 \quad \text{for } k > n, \\
 s_{a,b; q, p}(n + 1, k) &= \frac{\theta(aq, bq^{1+n}, bq^{2+n}, aq^n/b, aq^{n-1}/b; p)}{\theta(aq^{1+2n}, bq, bq^2, a/b, a/bq; p)} q^{-n} \\
 &\quad \times (s_{a,b; q, p}(n, k - 1) - [n]_{a,b; q, p} s_{a,b; q, p}(n, k)).
\end{align*}
\]

Again, analogous to the q-case, one can also deduce a corresponding identity involving the elliptic raising factorials (which we omit here).
Clearly,

\[\sum_{k=l}^{n} S_{a,b;q,p}(n, k) s_{a,b;q,p}(k, l) = \delta_{n,l}, \]

or

\[(S_{a,b;q,p}(n, k))_{n,k\in\mathbb{N}_0}^{-1} = (s_{a,b;q,p}(k, l))_{k,l\in\mathbb{N}_0}. \]
Clearly,
\[
\sum_{k=l}^{n} S_{a,b; q,p}(n, k) s_{a,b; q,p}(k, l) = \delta_{n,l},
\]
or
\[
(S_{a,b; q,p}(n, k))^{-1}_{n, k \in \mathbb{N}_0} = (s_{a,b; q,p}(k, l))_{k,l \in \mathbb{N}_0}.
\]

Explicit expressions:
\[
S_{a,b; q,p}(n, 0) = \delta_{n,0},
\]
\[
S_{a,b; q,p}(n, 1) = 1 - \delta_{n,0},
\]
\[
S_{a,b; q,p}(n, 2) = [2]_{a,b; q,p}^{n-1} - 1,
\]
\[
S_{a,b; q,p}(n, 3) = [2]_{aq^2, bq; q,p}^{-1} - 1
\]
\[
\times \left([3]_{a,b; q,p}^{n-1} - [2]_{aq^2, bq; q,p} aq^5, bq^2, a/b; p) + \theta(aq^3, bq^4, aq^2/b; p) q \right).
\]
Clearly,
\[
\sum_{k=l}^{n} S_{a,b;q,p}(n, k) s_{a,b;q,p}(k, l) = \delta_{n,l},
\]
or
\[
(S_{a,b;q,p}(n, k))^{-1}_{n,k \in \mathbb{N}_0} = (s_{a,b;q,p}(k, l))_{k,l \in \mathbb{N}_0}.
\]

Explicit expressions:

\[
S_{a,b;q,p}(n, 0) = \delta_{n,0},
\]
\[
S_{a,b;q,p}(n, 1) = 1 - \delta_{n,0},
\]
\[
S_{a,b;q,p}(n, 2) = [2]_{a,b;q,p}^{n-1} - 1,
\]
\[
S_{a,b;q,p}(n, 3) = [2]_{aq^2,bq;q,p}^{-1} \left([3]_{a,b;q,p}^{n-1} - [2]_{aq^2,bq;q,p} [2]_{a,b;q,p}^{n-1} + \frac{\theta(aq^5, bq^2, a/b; p)}{\theta(aq^3, bq^4, aq^2/b; p)} q \right).
\]

So far, we were not able to find any explicit formula for \(S_{a,b;q,p}(n, k) \) for general \(n \) and \(k \).
Clearly,
\[
\sum_{k=l}^{n} S_{a,b;q,p}(n, k) s_{a,b;q,p}(k, l) = \delta_{n,l},
\]
or
\[
(S_{a,b;q,p}(n, k))^{-1}_{n,k \in \mathbb{N}_0} = (s_{a,b;q,p}(k, l))_{k,l \in \mathbb{N}_0}.
\]

Explicit expressions:

\[
S_{a,b;q,p}(n, 0) = \delta_{n,0},
\]
\[
S_{a,b;q,p}(n, 1) = 1 - \delta_{n,0},
\]
\[
S_{a,b;q,p}(n, 2) = [2]^{n-1}_{a,b;q,p} - 1,
\]
\[
S_{a,b;q,p}(n, 3) = [2]^{-1}_{aq^2,bq;q,p} \times \left([3]^{n-1}_{a,b;q,p} - [2]^{n-1}_{aq^2,bq;q,p} + \frac{\theta(aq^5, bq^2, a/b; p)}{\theta(aq^3, bq^4, aq^2/b; p)} q \right).
\]

So far, we were not able to find any explicit formula for \(S_{a,b;q,p}(n, k)\) for general \(n\) and \(k\).

In particular, it appears that \(S_{a,b;q,p}(n, k)\) cannot be written as a multiple of an elliptic hypergeometric series.
Elliptic Lah numbers

The elliptic Lah numbers $L_{a, b}; q, p(n, k)$ can be defined as the following connection coefficients:

$$\left[x^k \right]^a, b; q, p = \sum_{j=0}^{n} L_{a, b}; q, p(n, j) \left[x^j \right]^a, b; q, p.$$

Thus, the elliptic Lah numbers are the result of convolution of the elliptic Stirling numbers of the two different kinds:

$$L_{a, b}; q, p(n, k) = \sum_{j=0}^{k} S_{a, b}; q, p(n, j) \left[x^k \right]^a, b; q, p.$$

The elliptic Lah numbers satisfy the recursion formula

$$L_{a, b}; q, p(n+1, k) = \theta(aq^{2k-1}, bq, bq^2, aq-1/n-1/b, aq/n/b) \times q^{n+k-1}L_{a, b}; q, p(n, k-1) + \left[n+k \right]aq^{2n}L_{a, b}; q, p(n, k).$$
Elliptic Lah numbers

The elliptic Lah numbers $L_{a,b;\,q,p}(n, k)$, can be defined as the following connection coefficients:

$$[x^n]_{a,b;\,q,p} = \sum_{k=0}^{n} L_{a,b;\,q,p}(n, k) [x^k]_{a,b;\,q,p}.$$
Elliptic Lah numbers

The elliptic Lah numbers $L_{a,b; q,p}(n, k)$, can be defined as the following connection coefficients:

$$[x^n]_{a,b; q,p} = \sum_{k=0}^{n} L_{a,b; q,p}(n, k) [x^k]_{a,b; q,p}.$$

Thus, the elliptic Lah numbers are the result of convolution of the elliptic Stirling numbers of the two different kinds:

$$L_{a,b; q,p}(n, k) = \sum_{j=k}^{n} S_{a,b; q,p}(n, j) s_{a,b; q,p}(j, k).$$
Elliptic Lah numbers

The elliptic Lah numbers $L_{a,b;q,p}(n, k)$, can be defined as the following connection coefficients:

$$[x]_a^\overline{n} = \sum_{k=0}^{n} L_{a,b;q,p}(n, k) [x]^k_{a,b;q,p}.$$

Thus, the elliptic Lah numbers are the result of convolution of the elliptic Stirling numbers of the two different kinds:

$$L_{a,b;q,p}(n, k) = \sum_{j=k}^{n} S_{a,b;q,p}(n, j) s_{a,b;q,p}(j, k).$$

The elliptic Lah numbers satisfy the recursion formula

$$L_{a,b;q,p}(n + 1, k) = \frac{\theta(aq^{2k-1}, bq, bq^2, aq^{n-1}/b, aq^{-n}/b; p) \theta(aq^{1-2n}, bq^{k+1-n}, bq^{k+2-n}, aq^{k-n-1}/b, aq^{k-n}/b; p)}{q^{n+k-1}L_{a,b;q,p}(n, k - 1) + [n + k]_{aq^{-2n}, bq^{-n}; q} L_{a,b;q,p}(n, k).}$$
The elliptic Lah numbers, in general, do **not** factorize in closed form (contrary to the classical case) but they do factorize nicely in the $p \to 0$, $b \to 0$ limiting case:
The elliptic Lah numbers, in general, do not factorize in closed form (contrary to the classical case) but they do factorize nicely in the $p \to 0$, $b \to 0$ limiting case:

Let $L_{a; q}(n, k) = \lim_{b \to 0} (\lim_{p \to 0} L_{a, b; q, p}(n, k))$.

Explicit formula:

$$L_{a; q}(n, k) = q^{\binom{k}{2}} - \binom{n}{2} - n(k - 1) \frac{n!}{(n-k)!} q^n a^k - 1^n q^{n+k} \left(a\frac{n}{2} - n + 1 \right) q^{n+k} a^{k-1}.$$

It is easy to see that in the $a \to \infty$ limit we recover the q-Lah number $L_{q}(n, k)$.
The elliptic Lah numbers, in general, do not factorize in closed form (contrary to the classical case) but they do factorize nicely in the $p \to 0$, $b \to 0$ limiting case:

Let $L_{a;q}(n, k) = \lim_{b \to 0} (\lim_{p \to 0} L_{a,b;q,p}(n, k))$.

Explicit formula:

\[
L_{a;q}(n, k) = q^{\binom{k}{2} - \binom{n}{2} - n(k-1)} \left[\begin{array}{c} n \\ k \end{array}\right] \frac{[n-1]_q!}{[k-1]_q!} \frac{(aq^{k-n+1}; q)_{n+k}}{(aq^{3-2n}; q^2)_n(aq^2; q^2)_k},
\]

where $(z; q)_m = (1 - z)(1 - zq) \cdots (1 - zq^{m-1})$.
The elliptic Lah numbers, in general, do not factorize in closed form (contrary to the classical case) but they do factorize nicely in the $p \to 0$, $b \to 0$ limiting case:

Let $L_{a; q}(n, k) = \lim_{b \to 0} (\lim_{p \to 0} L_{a, b; q, p}(n, k))$.

Explicit formula:

$$L_{a; q}(n, k) = q^{\binom{k}{2} - \binom{n}{2} - n(k-1)} \begin{bmatrix} n \\ k \end{bmatrix} \frac{[n - 1]_q!}{[k - 1]_q!} \frac{(aq^{k-n+1}; q)_{n+k}}{(aq^{3-2n}; q^2)_n (aq^2; q^2)_k},$$

where $(z; q)_m = (1 - z)(1 - zq)\cdots(1 - zq^{m-1})$.

It is easy to see that in the $a \to \infty$ limit we recover the q-Lah number $L_q(n, k)$.
Final remarks:

Combinatorial interpretations of the above elliptic Stirling and Lah numbers have been given in terms of rook theory [M.S. & Meesue Yoo, Electronic J. Combin. 24(1) (2017), #P1.31].

Rather than using elliptic weights, one can also give weight-dependent generalizations of the above elliptic Stirling and Lah numbers [Zs´ofia R. Keresk´ényin´e Balogh & M.S., unpublished].

The weights can be specialized to yield, e.g., symmetric function analogues of the Stirling and Lah numbers.
Final remarks:

Final remarks:

- Combinatorial interpretations of the above elliptic Stirling and Lah numbers have been given in terms of rook theory [M.S. & Meesue Yoo, Electronic J. Combin. 24(1) (2017), #P1.31].
Final remarks:

- Combinatorial interpretations of the above elliptic Stirling and Lah numbers have been given in terms of rook theory [M.S. & Meesue Yoo, Electronic J. Combin. 24(1) (2017), #P1.31].

- Rather than using elliptic weights, one can also give weight-dependent generalizations of the above elliptic Stirling and Lah numbers [Zsófia R. Kereskényiné Balogh & M.S., unpublished]. The weights can be specialized to yield, e.g., symmetric function analogues of the Stirling and Lah numbers.