Surfing on protein waves: proteophoresis as a mechanism for bacterial genome partitioning

Jean-Charles Walter

Laboratoire Charles Coulomb, CNRS & Université de Montpellier, France

European Physical Society
Nordita, Stockholm, Sweden
7-11 May 2019
Outline

1. Bacterial DNA segregation: the ParABS system

2. Dynamics: complexes surfing on protein waves
Segregation of bacterial DNA

How is the bacterial genome segregated?

Credit: J. Rech

2 μm

Replication → Segregation → Division

Jean-Charles Walter
Bacterial genome partitioning

Bacterial DNA segregation: the ParABS system

The ParABS operon

- **ParA**: “motor” protein (ATPase, Walker-type)
- **ParB**: binding protein (specific or non-specific binding)
- **parS**: centromere-like DNA sequence
Bacterial DNA segregation: experimental facts

Le Gall et al, Nat. Comm. '16

Bouet's team, LMGM, unpublished

Single cell

Average

N=5,843

Axial position, nm

Le Gall et al, Nat. Comm. '16
How does ParABS work?

Step 1. Formation of the partition complex

Step 2. Separation of the copies of DNA

Step 3. Positioning

3 components:

- 2 proteins (ParA & ParB)
- Specific binding sites (parS)

Jean-Charles Walter

Bacterial genome partitioning
Bacterial genome partitioning
Dynamics: complexes surfing on protein waves

Bacterial DNA segregation: interactions of ParAB

ParA-slow (ATP)
ParA-fast (ADP)
nucleoid DNA
ParBS

1/4 3/4
catalytic
"cargo" scaffolding equipositioning

k2
substrate

Jean-Charles Walter
Bacterial genome partitioning
Dynamical steps: Reaction-Diffusion equations

ParA-fast: \[
\frac{\partial u}{\partial t} = D_1 \Delta u - k_1 u(r, t) + k_2 v(r, t) \sum_i S(r - r_i(t))
\]

ParA-slow: \[
\frac{\partial v}{\partial t} = D_2 \Delta v + k_1 u(r, t) - k_2 v(r, t) \sum_i S(r - r_i(t))
\]

\[
m\gamma \frac{dr_i}{dt}(t) = \varepsilon \int_V \nabla v(r', t) S(r' - r_i(t)) \, d^3r'
\]

- Feedback between the partition complexes and ParA densities
 \rightarrow Non-linear system with dynamical instability
Dynamical instability
Threshold of dynamical stability obtained with Traveling Waves (TW) ansatz:
\[u(x, t) = u(\xi); \quad v(x, t) = v(\xi), \text{ where } \xi = x - c_{TW} t \]

\[|c_{TW}| \quad \alpha = \frac{\varepsilon}{m \gamma D^2} \]

Stability TW-like
Static solution unstable

\[\alpha_c = N_{ParA}^{-1} \]
Bacterial genome partitioning

Dynamics: complexes surfing on protein waves

Quasistatic hypothesis: calculation of the profiles

\[\alpha < \alpha_c \]

\[\alpha = \alpha_c \]

\[\alpha > \alpha_c \]
Comparison with experiments

Single cell

Average

Jean-Charles Walter
Minimal reaction-diffusion system:
→ sufficient to explain segregation and positioning in ParABS

Non-linear coupling between ParBS and ParA densities:
→ Self-consistent description of the 3 protein species

Analytical analysis:
→ dynamical transition (stable/unstable regime)

arXiv:1702.07372 [q-bio.SC]
Physical modeling

G. David
J. Dorignac
F. Geniet
V. Lorman
J. Palmieri
A. Parmeggiani

Molecular biology

R. Diaz
A. Sanchez
J. Rech
J-Y. Bouet

Super-resolution microscopy

D. Cattoni
A. Le Gall
M. Nollmann
Bacterial genome partitioning

Dynamics: complexes surfing on protein waves

Screening length

Jean-Charles Walter
Infinite system (left) Supercritical pitchfork bifurcation diagram of reduced system in the (K, ν) space. (right) Dynamical phase diagram in the plane (K, σ) where $K = \frac{\alpha m_0}{4D\ell}$ and σ is the dimensionless width of a gaussian source. The red curve represents the boundary (critical value K_c vs. σ).
Bacterial genome partitioning

Dynamics: complexes surfing on protein waves

Supercritical pitchfork bifurcation

Periodic Boundary Conditions (left) Dynamical phase diagram in the plane \((K, \mu)\) where \(K = \frac{\alpha m_0}{4D\ell}\) and \(\mu = \frac{L}{\ell}\) is the dimensionless ratio between \(L\) (size domain \(2L\)) and the screening length \(\ell = \sqrt{D/k}\). (right) TW dimensionless velocity \(v\) (positive) vs. parameter \(K = \frac{\alpha m_0}{4D\ell}\) for different values of \(\mu = \frac{L}{\ell}\) from 0.5 to 2 and for \(\mu \to \infty\). The blue curve is the same as the upper part for infinite system, thus the right limit is recovered.
Supercritical pitchfork bifurcation

No-Flux Boundary Conditions (Log-log plot of the instability threshold $K_{c}(\mu)$ versus the system size to screening length ratio $\mu = L/\ell$ for a Dirac source.)